Zooremediation: Utilizing Animals for Environmental Purification and Pollution Mitigation

Fadita Nurul Aini, Upi Chairun Nisa, Windri Handayani, Tety Maryenti, Yasman Yasman

Abstract

Background: The global human population continues to grow rapidly, leading to increasing urban waste and environmental contamination. One emerging and promising approach to mitigating this pollution is zooremediation, which utilizes animals as biological agents for environmental cleanup. This review aims to critically assess the effectiveness of various animal species in removing specific classes of pollutants, with particular attention to their mechanisms of action—zooextraction, zootransformation, and zooaccumulation—and the environmental conditions under which they operate. Effectiveness is evaluated based on pollutant removal efficiency, adaptability to contaminated environments, and ecological safety. Methods: Through systematic literature analysis, we identified key species, including Geukensia demissa, Daphnia magna, and Anadara granosa, which demonstrated measurable success in the remediation of aquatic environments contaminated with heavy metals and organic pollutants. Additionally, soil-dwelling nematodes such as Caenorhabditis elegans and Cephalobus persegnis play critical roles in hydrocarbon degradation and in enhancing microbial synergy in polluted substrates. These findings highlight the diverse functional capacities of animals in bioremediation efforts. The methodology employed in this study is a comprehensive literature review, focusing on peer-reviewed articles published over the last two decades. Results: This review synthesizes findings related to pollutant types, animal species used in zooremediation, remediation outcomes, and ecological impacts. By critically examining existing studies, the evaluation identifies trends, gaps, and challenges in the application of zooremediation. Conclusion: Future research should focus on understanding the long-term impacts, optimizing protocols, and safeguarding both ecological and animal health to fully realize the potential of zooremediation in managing environmental pollution on a global scale.

Full text article

Generated from XML file

References

Ahadi, N., Sharifi, Z., Hossaini, S. M. T., Rostami, A., & Renella, G. (2020). Remediation of Heavy Metals and Enhancement of Fertilizing Potential of a Sewage Sludge by the Synergistic Interaction of Woodlice and Earthworms. Journal of Hazardous Materials, 385. https://doi.org/10.1016/j.jhazmat.2019.121573
Amato, A., Esposito, R., Federico, S., Pozzolini, M., Giovine, M., Bertolino, M., Guida, M., Manfra, L., Libralato, G., Zupo, V., & Costantini, M. (2023). Marine Sponges as Promising Candidates for Integrated Aquaculture Combining Biomass Increase and Bioremediation: an Updated Review. Frontiers in Marine Science, 10, 1–16. https://doi.org/10.3389/fmars.2023.1234225
Awad, H. E. A., Mohammad, A. M., & Farahat, E. A. (2023). Potential Use of Dry Powder of Vossia Cuspidata (Roxb.) Griff. Rhizomes and Leaves in Methylene Blue Dye Remediation. Scientific Reports, 13(1), 1–17. https://doi.org/10.1038/s41598-023-37987-0
Bhattacharyya, S. S., Leite, F. F. G. D., France, C. L., Adekoya, A. O., Ros, G. H., de Vries, W., Melchor-Martínez, E. M., Iqbal, H. M. N., & Parra-Saldívar, R. (2022). Soil Carbon Sequestration, Greenhouse Gas Emissions, and Water Pollution Under Different Tillage Practices. Science of the Total Environment, 826. https://doi.org/10.1016/j.scitotenv.2022.154161
Dadebo, D., Obura, D., & Atukunda, A. (2024). Phytoremediation of Laundry Wastewater using Pistia Stratiotes and Recycling of Spent Plant Biomass for Sustainable Biomethane Production. Bioresource Technology Reports, 26(December 2023), 101855. https://doi.org/10.1016/j.biteb.2024.101855
Dai, W., Ke, X., Li, Z., Gao, M., Wu, L., Chiristie, P., & Luo, Y. (2018). Antioxidant Enzyme Activities of Folsomia candida and Avoidance of Soil Metal Contamination. Environmental Science and Pollution Research, 25(3). https://doi.org/10.1007/s11356-017-0489-x
Delsarte, I., Cohen, G. J. V., Momtbrun, M., Höhener, P., & Atteia, O. (2021). Soil Carbon Dioxide Fluxes to Atmosphere: The role of Rainfall to Control CO2 Transport. Applied Geochemistry, 127(November 2020). https://doi.org/10.1016/j.apgeochem.2020.104854
Ditta, A., & Arshad, M. (2016). Applications and Perspectives of Using Nanomaterials for Sustainable Plant Nutrition. Nanotechnology Reviews, 5(2), 209–229. https://doi.org/10.1515/ntrev-2015-0060
Durand, S. E., Niespor, R., Ador, A., Govinda, N., Candia, M., & Torres, K. (2020). Ribbed Mussel in an Urban Waterway Filters Bacteria Introduced by Sewage. Marine Pollution Bulletin, 161. https://doi.org/10.1016/j.marpolbul.2020.111629
Filgueiras, C. C., Kim, Y., Wickings, K. G., El Borai, F., Duncan, L. W., & Willett, D. S. (2023). The Smart Soil Organism Detector: An Instrument and Machine Learning Pipeline for Soil Species Identification. Biosensors and Bioelectronics, 221. https://doi.org/10.1016/j.bios.2022.114417
FBIS. (n.d.). Daphnia magna. Freshwater Biodiversity Information System. https://freshwaterbiodiversity.org.bd/species/daphnia-magna/
GBIF. (2023). Tubificidae. Global Biodiversity Information Facility. Axinella damicornis
Gifford, S., Dunstan, R. H., O’Connor, W., Koller, C. E., & MacFarlane, G. R. (2007). Aquatic Zooremediation: Deploying Animals to Remediate Contaminated Aquatic Environments. Trends in Biotechnology, 25(2), 60–65. https://doi.org/10.1016/j.tibtech.2006.12.002
Goyache, I., Yavorov-Dayliev, D., Milagro, F. I., & Aranaz, P. (2024). Caenorhabditis Elegans as a Screening Model for Probiotics with Properties Against Metabolic Syndrome. International Journal of Molecular Sciences, 25(2). https://doi.org/10.3390/ijms25021321
Gravina, M. F., Longo, C., Puthod, P., Rosati, M., Colozza, N., & Scarselli, M. (2022). Heavy Metal Accumulation Capacity of Axinella damicornis (Esper, 1794) (Porifera, Demospongiae): A Tool for Bioremediation of Polluted Seawaters. Mediterranean Marine Science, 23(1), 125–133. https://doi.org/10.12681/mms.27792
Gruss, I., Twardowski, J., Matkowski, K., & Jurga, M. (2022). Impact of Collembola on the Winter Wheat Growth in Soil Infected by Soil-Borne Pathogenic Fungi. Agronomy, 12(7). https://doi.org/10.3390/agronomy12071599
Helmy, Q., & Kardena, E. (2024). Enhancing Field-Scale Bioremediation of Weathered Petroleum Oil-Contaminated Soil with Biocompost as a Bulking Agent. Case Studies in Chemical and Environmental Engineering, 9(November 2023), 100735. https://doi.org/10.1016/j.cscee.2024.100735
iNaturalist. (n.d.-a). Anodonta californiensis. INaturalist. https://www.inaturalist.org/taxa/738202-Anodonta-californiensis
iNaturalist. (n.d.-b). Eisenia fetida. INaturalist. https://www.inaturalist.org/taxa/127409-Eisenia-fetida
Ismail, N. S., Dodd, H., Sassoubre, L. M., Horne, A. J., Boehm, A. B., & Luthy, R. G. (2015). Improvement of Urban Lake Water Quality by Removal of Escherichia coli Through the Action of the Bivalve Anodonta Californiensis. Environmental Science and Technology, 49(3), 1664–1672. https://doi.org/10.1021/es5033212
Jakovljević, V. D., & Vrvić, M. M. (2018). Potential of Pure and Mixed Cultures of Cladosporium cladosporioides and Geotrichum candidum for Application in Bioremediation and Detergent Industry. Saudi Journal of Biological Sciences, 25(3), 529–536. https://doi.org/10.1016/j.sjbs.2016.01.020
Jóźwiak, M. A., Jóźwiak, M., Kozłowski, R., & Żelezik, M. (2019). Zooremediation of Leachates From Municipal Waste using Eisenia fetida (SAV.). Environmental Pollution, 254. https://doi.org/10.1016/j.envpol.2019.07.039
Junior, S. F. S., Mannarino, C. F., Bila, D. M., Taveira Parente, C. E., Correia, F. V., & Saggioro, E. M. (2021). Lethal and long-term effects of landfill leachate on Eisenia Andrei Earthworms: Behavior, Reproduction and Risk Assessment. Journal of Environmental Management, 285.
Kaur, H., Hussain, S. J., Mir, R. A., Chandra Verma, V., Naik, B., Kumar, P., & Dubey, R. C. (2023). Nanofertilizers – Emerging Smart Fertilizers for Modern and Sustainable Agriculture. Biocatalysis and Agricultural Biotechnology, 54. https://doi.org/10.1016/j.bcab.2023.102921
Le, N. G., van Ulsen, P., van Spanning, R., Brouwer, A., van Straalen, N. M., & Roelofs, D. (2022). A Functional Carbohydrate Degrading Enzyme Potentially Acquired by Horizontal Gene Transfer in the Genome of the Soil Invertebrate Folsomia candida. Genes, 13(8). https://doi.org/10.3390/genes13081402
Li, R., He, L., Wei, W., Hao, L., Ji, X., Zhou, Y., & Wang, Q. (2015). Chlorpyrifos Residue Levels on Field Crops (Rice, Maize And Soybean) in China and Their Dietary Risks to Consumers. Food Control, 51, 212–217. https://doi.org/10.1016/j.foodcont.2014.11.023
Liang, Z., Neményi, A., Kovács, G. P., & Gyuricza, C. (2024). Incorporating functional traits into Heavy Metals Phytoremediation: The Future of Field-Based Phytoremediation. Ecological Indicators, 166(April). https://doi.org/10.1016/j.ecolind.2024.112262
Longo, C., Cardone, F., Corriero, G., Licciano, M., Pierri, C., & Stabili, L. (2016). The Co-Occurrence of the Demosponge Hymeniacidon Perlevis and the Edible Mussel Mytilus Galloprovincialis as a New Tool for Bacterial Load Mitigation in Aquaculture. Environmental Science and Pollution Research, 23(4), 3736–3746. https://doi.org/10.1007/s11356-015-5587-z
Longo, C., Pierri, C., Mercurio, M., Trani, R., Cardone, F., Carbonara, P., Alfonso, S., & Stabili, L. (2022). Bioremediation Capabilities of Hymeniacidon perlevis (Porifera, Demospongiae) in a Land-Based Experimental Fish Farm. Journal of Marine Science and Engineering, 10(7). https://doi.org/10.3390/jmse10070874
Martínez-burgos, W. J., Porto, L., Vandenberghe, D. S., Fátima, A., Mello, M. De, Carvalho, J. C. De, Valladares-diestra, K. K., Manzoki, C., Scapini, T., Pozzan, R., Liew, R. K., Soccol, T., & Soccol, C. R. (2024). Bioremediation Strategies Against Pesticides: An Overview of Current Knowledge and Innovations. ECSN, 142867. https://doi.org/10.1016/j.chemosphere.2024.142867
Mendes, L. A., Maria, V. L., Scott-Fordsmand, J. J., & Amorim, M. J. B. (2015). Ag Nanoparticles (Ag NM300K) in the Terrestrial Environment: Effects at Population And Cellular Level in Folsomia Candida (Collembola). International Journal of Environmental Research and Public Health, 12(10), 12530–12542. https://doi.org/10.3390/ijerph121012530
Novakovskiy, A. B., Kanev, V. A., & Markarova, M. Y. (2021). Long-Term Dynamics of Plant Communities After Biological Remediation of Oil-Contaminated Soils in Far North. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-84226-5
Pacific Raya. (2015). Anadara granosa. Pacific Raya-Science and Technology Reviews. https://pacificraya.wordpress.com/2012/12/28/kerang-darah-anadara-granosa/anadara-granosa-2/
Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B., & Kamili, A. N. (2021). Microbial Degradation of Organic Constituents for Sustainable Development. In Microbiota and Biofertilizers, 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs, 2. https://doi.org/10.1007/978-3-030-61010-4_5
Penha-Lopes, G., Torres, P., Narciso, L., Cannicci, S., & Paula, J. (2009). Comparison of Fecundity, Embryo Loss and Fatty Acid Composition of Mangrove Crab Species in Sewage Contaminated and Pristine Mangrove Habitats in Mozambique. Journal of Experimental Marine Biology and Ecology, 381(1), 25–32. https://doi.org/10.1016/j.jembe.2009.08.009
Rahman, M. E., Uddin, M. K., Shamsuzzaman, S. M., Mahmud, K., Shukor, M. Y. A., Ghani, S. S. A., Nabayi, A., Sadeq, B. M., Chompa, S. S., Akter, A., & Halmi, M. I. E. Bin. (2024). Potential use of Pennisetum Purpureum for Phytoremediation of Arsenic in Treatment Sand: A Phytotoxicity Study. Biocatalysis and Agricultural Biotechnology, 60(April), 103300. https://doi.org/10.1016/j.bcab.2024.103300
Renitasari, D. P., Ihwan, I., & Syahrir, M. (2023). Minimaliser limbah N dan P Tambak Udang Vaname dengan Memanfaatkan Biofilter Kerang Darah (Anadara granosa). Sains Akuakultur Tropis: Indonesian Journal of Tropical Aquaculture, 7(1), 139–145. https://doi.org/10.14710/sat.v7i1.17237
Sari, M. P., Riyantini, I., & Ihsan, Y. N. (2022). Kontaminasi Logam Pb (Timbal) pada Anadara granosa di Pantai Utara Kabupaten Cirebon. Buletin Oseanografi Marina, 11(3), 248–254. https://doi.org/10.14710/buloma.v11i3.38451
Sarwar, M., Patra, J. K., Ali, A., Maqbool, M., & Arshad, M. I. (2020). Effect of compost and NPK fertilizer on improving biochemical and Antioxidant Properties of Moringa oleifera. South African Journal of Botany, 129, 62–66. https://doi.org/10.1016/j.sajb.2019.01.009
Schuijt, L. M., van Bergen, T. J. H. M., Lamers, L. P. M., Smolders, A. J. P., & Verdonschot, P. F. M. (2021). Aquatic Worms (Tubificidae) Facilitate Productivity of Macrophyte Azolla Filiculoides in a Wastewater Biocascade System. Science of the Total Environment, 787. https://doi.org/10.1016/j.scitotenv.2021.147538
Serra, T., Soler, M., Pous, N., & Colomer, J. (2019). Daphnia Magna Filtration, Swimming and Mortality Under Ammonium, Nitrite, Nitrate and Phosphate. Science of the Total Environment, 656, 331–337. https://doi.org/10.1016/j.scitotenv.2018.11.382
Shahane, A. A., & Shivay, Y. S. (2021). Soil Health and Its Improvement Through Novel Agronomic and Innovative Approaches. Frontiers in Agronomy, 3, 1–31. https://doi.org/10.3389/fagro.2021.680456
Shaikhulova, S., Fakhrullina, G., Nigamatzyanova, L., Akhatova, F., & Fakhrullin, R. (2021). Worms Eat Oil: Alcanivorax Borkumensis Hydrocarbonoclastic Bacteria Colonise Caenorhabditis Elegans Nematodes Intestines as a First Step Towards Oil Spills Zooremediation. Science of the Total Environment, 761. https://doi.org/10.1016/j.scitotenv.2020.143209
Slack, R. J., Gronow, J. R., & Voulvoulis, N. (2005). Household Hazardous Waste in Municipal Landfills: Contaminants in Leachate. Science of the Total Environment, 337(1–3), 119–137. https://doi.org/10.1016/j.scitotenv.2004.07.002
SOCMUCIMM. (2014). Caenorhabditis elegans. Society for Mucosal Immunology. https://www.socmucimm.org/resources/news-media/an-overview-of-the-model-organism-c-elegans/
Spot, N. (2017). Folsomia candida. Nature Spot-Wildlife and Wild Places of Leicestershire & Rutland. https://www.naturespot.org/species/folsomia-candida
Suthar, S., Singh, S., & Dhawan, S. (2008). Earthworms as Bioindicator of Metals (Zn, Fe, Mn, Cu, Pb and Cd) in Soils: Is Metal Bioaccumulation Affected by Their Ecological Category? Ecological Engineering, 32(2), 99–107. https://doi.org/10.1016/j.ecoleng.2007.10.003
Taylor, C., & Ramos, K. (2015). Female Rhabditis. Variety of Life. http://taxondiversity.fieldofscience.com/2015/01/rhabditoidea.html
Thakar, S. P., Dabhi, R. C., Rathod, S. L., Patel, U. P., Rana, A., Shrivastav, P. S., George, L. B., & Highland, H. (2024). In Situ Chlorpyrifos (CPF) Degradation by Acrobeloides maximus: Insights from Chromatographic Analysis. Journal of Chromatography A, 1714. https://doi.org/10.1016/j.chroma.2023.464555
Treifeldt, J. E. Von, Firestein, K. L., Joseph, F. S., Zhang, C., Siriwardena, D. P., Lewis, M., & Golberg, D. V. (2020). Fungal bioremediation: An Overview of the Mechanisms, Applications and Future Perspectives. Materials & Design, 109403. https://doi.org/10.1016/j.enceco.2024.07.002
Weird Pets PH. (n.d.). Porcellio sp. Weird Pets PH. https://www.weirdpets.ph/products/porcellio-sp-sevilla
Workineh, M. (2020). Impact of Application of Organic Fertilizer on Production of Some Cereal Crops: A Review. Academic Research Journal of Agricultural Science and Research, 8(3), 214–226. https://doi.org/10.14662/ARJASR2020.145
WORMS. (1794). Axinella damicornis. World Register of Marine Species. https://www.marinespecies.org/aphia.php?p=taxdetails&id=132472
WORMS. (1817). Geukensia demissa. World Register of Marine Species. https://www.marinespecies.org/aphia.php?p=taxdetails&id=156859#images
WORMS. (1814). Hymeniacidon perlevis. World Register of Marine Species.
WORMS. (1819). Mytilus galloprovincialis. World Register of Marine Species.
WUR Library. (n.d.). Cephalobus persegnis: female posterior body. Wageningen University & Research. https://images.wur.nl/digital/collection/nematode_pict/id/846
Xu, J., Zhang, Q., Li, D., Du, J., Wang, C., & Qin, J. (2019). Rapid Degradation of Long-Chain Crude Oil in Soil by Indigenous Bacteria using Fermented Food Waste Supernatant. Waste Management, 85, 361–373. https://doi.org/10.1016/j.wasman.2018.12.041
Yeheyo, H. A., Ealias, A. M., George, G., & Jagannathan, U. (2024). Bioremediation Potential of Microalgae for Sustainable Soil Treatment in India: A Comprehensive Review on Heavy Metal and Pesticide Contaminant Removal. Journal of Environmental Management, 363(April), 121409. https://doi.org/10.1016/j.jenvman.2024.121409
Yen, P., Lin, T., Chuah, W. L., Chang, C., Tseng, Y., Huang, C., Yang, J., Hsu, F., & Liao, V. H. (2023). Methanol Extracts from Cirsium japonicum DC. var. australe Kitam. and Their Active Components Reduce Intracellular Oxidative Stress in Caenorhabditis elegans. Molecules, 28(19). https://www.mdpi.com/1420-3049/28/19/6923
Yu, D., Guo, M., Tan, M., & Su, W. (2024). Lipid-Lowering and Antioxidant Effects of Self-Assembled Astaxanthin–Anthocyanin Nanoparticles on High-Fat Caenorhabditis elegans. Foods, 13(4). https://doi.org/10.3390/foods13040514
Zhang, L., Zhu, Y., Gu, H., Lam, S. S., Chen, X., Sonne, C., & Peng, W. (2024). A Review of Phytoremediation of Environmental Lead (pb) Contamination. Chemosphere, 362(December 2023), 142691. https://doi.org/10.1016/j.chemosphere.2024.142691
Zhang, X., Chen, Q., Chen, L., Chen, X., & Ma, Z. (2024). Anti-Aging in Caenorhabditis Elegans of Polysaccharides from Polygonatum cyrtonema Hua. Molecules, 29(6), 1276. https://doi.org/10.3390/molecules29061276
Zhou, J., Xu, X., Huang, G., Li, W., Wei, Q., Zheng, J., & Han, F. (2022). Oil Degradation and Variation of Microbial Communities in Contaminated Soils Induced by Different Bacterivorous Nematodes Species. Ecotoxicology and Environmental Safety, 229. https://doi.org/10.1016/j.ecoenv.2021.113079
Zhou, Q., Han, L., Li, Y., Li, J., & Yang, X. (2023). Neutral Dietary Effects of Two MicroRNAs, Csu-Novel-260 and Csu-Mir-14, on the Non-Target Arthropod Folsomia candida. Plants, 12(9). https://doi.org/10.3390/plants12091885
Zhou, Q., Wu, K., Yao, L., Chen, R., Liu, S., Xing, H., Nie, L., & Wu, Z. (2024). Bio-ecological Remediation of Freshwater Aquaculture Environments: A Systematic Review and Bibliometric Analysis. Water Biology and Security, 3(1). https://doi.org/10.1016/j.watbs.2023.100229
Zhou, T., Wu, J., Liu, Y., & Xu, A. (2023). Seawater Accelerated the Aging of Polystyrene and Enhanced Its Toxic Effects on Caenorhabditis elegans. International Journal of Molecular Sciences, 24(24). https://doi.org/10.3390/ijms242417219

Authors

Fadita Nurul Aini
Upi Chairun Nisa
Windri Handayani
Tety Maryenti
Yasman Yasman
yasman.si@sci.ui.ac.id (Primary Contact)
Aini, F. N., Nisa, U. C., Handayani, W., Maryenti, T., & Yasman, Y. (2025). Zooremediation: Utilizing Animals for Environmental Purification and Pollution Mitigation. BIOEDUSCIENCE, 9(2), 280–293. https://doi.org/10.22236/jbes/18376

Article Details