Metabolite Profiling and Bioprospecting of Acrolejeunea fertilis (Reinw., Blume & Nees) Schiffn. from Kebun Raya Cibodas, West Java

Nadhifa Tazkia Ramadhani, Windri Handayani, Yasman Yasman, Afiatry Putrika

Abstract

Background: Acrolejeunea fertilis (liverwort) is known for having various potential natural products. However, its abundance is limited, and its secondary metabolites have not been extensively investigated. The in vitro culture technique might enhance its biomass. Methods: This study aimed to investigate the metabolite profile of A. fertilis from Kebun Raya Cibodas grown in situ and in vitro. The bioactivity, including antioxidant, total phenolic, and flavonoid content and antibacterial activity, was also evaluated. The in vitro culture of A. fertilis used ½ MS media with the addition of 0,1 mg/L of 2,4-D and one mg/L of Kinetin. Methanol and n-hexane were used for extraction. Gas Chromatography-Mass spectrometry (GC-MS) is used for metabolite profiling. Results: The optimum IC50 value from n-hexane extract is 68,18±2,65 mg/L. The highest yield of total phenolic and flavonoid content from in situ methanol extract, which resulted in 130,68±0,002 µgGAE/gr and 5,97±0,01 µgQE/gr, respectively. Antibacterial activities were evaluated by measuring the zone of inhibition for S. aureus and E. coli. The optimum area measured from in situ n-hexane extract was 23,91±1,54 and 13,08±0,23 cm, respectively. Conclusions: These findings carry important implications for the further development of natural products obtained from liverwort regarding its potential as a bioactive compound.

Full text article

Generated from XML file

References

Akula, R., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6(11), 1720–1731. https://doi.org/10.4161/psb.6.11.17613
Broniatowska, B., Allmendinger, A., Kaiser, M., Montamat-Sicotte, D., Hingley-Wilson, S., Lalvani, A., Guiry, M., Blunden, G., & Tasdemir, D. (2011). Antiprotozoal, antitubercular and cytotoxic potential of cyanobacterial (blue-green algal) extracts from Ireland. Natural product communications, 6(5), 689–694.
Commisso, M., Guarino, F., Marchi, L., Muto, A., Piro, A., & Degola, F. (2021). Bryo-Activities: A Review on How Bryophytes Are Contributing to the Arsenal of Natural Bioactive Compounds against Fungi. Plants (Basel, Switzerland), 10(2), 203. https://doi.org/10.3390/plants10020203
Cragg, G., & Suffness, M. (1988). Metabolism of plant-derived anticancer agents. Pharmacology & therapeutics, 37(3), 425–461. https://doi.org/10.1016/0163-7258(88)90006-x
Dey, A., & De, J. N. (2010). Rauvolfia serpentina (L). Benth. Ex Kurz.-A Review. Asian Journal of Plant Sciences, 9(6), 285–298. https://doi.org/10.3923/ajps.2010.285.298
Dholwani, K. K., Saluja, A. K., Gupta, A. R., & Shah, D. R. (2008). A review on plant-derived natural products and their analogs with anti-tumor activity. Indian journal of pharmacology, 40(2), 49–58. https://doi.org/10.4103/0253-7613.41038
Dziwak, M., Wróblewska, K., Szumny, A., & Galek, R. (2022). Modern use of bryophytes as a source of secondary metabolites. Agronomy, 12(6), 1456. https://doi.org/10.3390/agronomy12061456
Ghosh, T. K., Tompa, N. H., Rahman, M. M., Mohi-Ud-Din, M., Al-Meraj, S. M. Z., Biswas, M. S., & Mostofa, M. G. (2021). Acclimation of liverwort Marchantia polymorpha to physiological drought reveals important roles of antioxidant enzymes, proline and abscisic acid in land plant adaptation to osmotic stress. Peer J, 9, e12419. https://doi.org/10.7717/peerj.12419
Joshi, S., Singh, S., Sharma, R., Vats, S., & Alam, A. (2023). Gas chromatography-mass spectrometry (GC-MS) profiling of aqueous methanol fraction of Plagiochasma appendiculatum Lehm. & Lindenb. and Sphagnum fimbriatum Wilson for probable antiviral potential. Vegetos (Bareilly, India), 36(1), 87–92. https://doi.org/10.1007/s42535-022-00458-4
Khaleghi, A., Naderi, R., Brunetti, C., Maserti, B. E., Salami, S. A., & Babalar, M. (2019). Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Scientific reports, 9(1), 19250. https://doi.org/10.1038/s41598-019-55889-y
Kim, J., & Park, E. (2002). Cytotoxic anticancer candidates from Natural Resources. Current Medicinal Chemistry-Anti-Cancer Agents, 2(4), 485–537. https://doi.org/10.2174/1568011023353949
Kralik, P., Beran, V., & Pavlik, I. (2012). Enumeration of Mycobacterium avium subsp. paratuberculosis by quantitative real-time PCR, culture on solid media and optical densitometry. BMC research notes, 5, 114. https://doi.org/10.1186/1756-0500-5-114
Laxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K. J. (2019). The Role of the Plant Antioxidant System in Drought Tolerance. Antioxidants (Basel, Switzerland), 8(4), 94. https://doi.org/10.3390/antiox8040094
Lee K. H. (1999). Anticancer drug design based on plant-derived natural products. Journal of biomedical science, 6(4), 236–250. https://doi.org/10.1007/BF02253565
Lobiuc, A., Pavăl, N. E., Mangalagiu, I. I., Gheorghiță, R., Teliban, G. C., Amăriucăi-Mantu, D., & Stoleru, V. (2023). Future Antimicrobials: Natural and Functionalized Phenolics. Molecules (Basel, Switzerland), 28(3), 1114. https://doi.org/10.3390/molecules28031114
Mahizan, N. A., Yang, S. K., Moo, C. L., Song, A. A., Chong, C. M., Chong, C. W., Abushelaibi, A., Lim, S. E., & Lai, K. S. (2019). Terpene Derivatives as a Potential Agent against Antimicrobial Resistance (AMR) Pathogens. Molecules (Basel, Switzerland), 24(14), 2631. https://doi.org/10.3390/molecules24142631
Makajanma, M. M., Taufik, I., & Faizal, A. (2020). Antioxidant and antibacterial activity of extract from two species of mosses: Leucobryum Aduncum and Campylopus Schmidii. Biodiversitas Journal of Biological Diversity, 21(6). https://doi.org/10.13057/biodiv/d210651
Makarewicz, M., Drożdż, I., Tarko, T., & Duda-Chodak, A. (2021). The Interactions between Polyphenols and Microorganisms, Especially Gut Microbiota. Antioxidants (Basel, Switzerland), 10(2), 188. https://doi.org/10.3390/antiox10020188
Martínez-Silvestre, K. E., Santiz-Gómez, J. A., Luján-Hidalgo, M. C., Ruiz-Lau, N., Sánchez-Roque, Y., & Gutiérrez-Miceli, F. A. (2022). Effect of UV-B Radiation on Flavonoids and Phenols Accumulation in Tempisque (Sideroxylon capiri Pittier) Callus. Plants (Basel, Switzerland), 11(4), 473. https://doi.org/10.3390/plants11040473
Métoyer, B., Lebouvier, N., Hnawia, E., Herbette, G., Thouvenot, L., Asakawa, Y., Nour, M., & Raharivelomanana, P. (2018). Chemotypes and Biomarkers of Seven Species of New Caledonian Liverworts from the Bazzanioideae Subfamily. Molecules (Basel, Switzerland), 23(6), 1353. https://doi.org/10.3390/molecules23061353
Mujeeb, F., Bajpai, P., & Pathak, N. (2014). Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. BioMed research international, 2014, 497606. https://doi.org/10.1155/2014/497606
Nogueira, J. O. E., Campolina, G. A., Batista, L. R., Alves, E., Caetano, A. R. S., Brandão, R. M., Nelson, D. L., & Cardoso, M. D. G. (2021). Mechanism of action of various terpenes and phenylpropanoids against Escherichia coli and Staphylococcus aureus. FEMS microbiology letters, 368(9), fnab052. https://doi.org/10.1093/femsle/fnab052
Peters, K., Treutler, H., Döll, S., Kindt, A. S. D., Hankemeier, T., & Neumann, S. (2019). Chemical Diversity and Classification of Secondary Metabolites in Nine Bryophyte Species. Metabolites, 9(10), 222. https://doi.org/10.3390/metabo9100222
Peters, K., Gorzolka, K., Bruelheide, H., & Neumann, S. (2018). Seasonal variation of secondary metabolites in nine different bryophytes. Ecology and evolution, 8(17), 9105–9117. https://doi.org/10.1002/ece3.4361
Platzer, M., Kiese, S., Herfellner, T., Schweiggert-Weisz, U., & Eisner, P. (2021). How Does the Phenol Structure Influence the Results of the Folin-Ciocalteu Assay?. Antioxidants (Basel, Switzerland), 10(5), 811. https://doi.org/10.3390/antiox10050811
Ramakrishna, A., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant signaling & behavior, 6(11), 1720–1731. https://doi.org/10.4161/psb.6.11.17613
Reviana, R., Usman, A. N., Raya, I., Aliyah, Dirpan, A., Arsyad, A., & Fendi, F. (2021). Analysis of antioxidant activity on cocktail honey products as female pre-conception supplements. Gaceta sanitaria, 35 Suppl 2, S202–S205. https://doi.org/10.1016/j.gaceta.2021.10.021
Scher, J. M., Burgess, E. J., Lorimer, S. D., & Perry, N. B. (2002). A cytotoxic sesquiterpene and unprecedented sesquiterpene-BISBIBENZYL compounds from the liverwort Schistochila glaucescens. Tetrahedron, 58(39), 7875–7882. https://doi.org/10.1016/s0040-4020(02)00899-2
Shamsudin, N. F., Ahmed, Q. U., Mahmood, S., Ali Shah, S. A., Khatib, A., Mukhtar, S., Alsharif, M. A., Parveen, H., & Zakaria, Z. A. (2022). Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. Molecules (Basel, Switzerland), 27(4), 1149. https://doi.org/10.3390/molecules27041149
Siregar, E. sartina, Pasaribu, N., & Khairani. (2020). The Liverwort family Lejeuneaceae (Marchantiophyta) of Mount Lubuk Raya, North Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity, 21(6). https://doi.org/10.13057/biodiv/d210653
Sonwa, M. M., & König, W. A. (2003). Chemical constituents of the essential oil of the hornwortanthoceros caucasicus. Flavour and Fragrance Journal, 18(4), 286–289. https://doi.org/10.1002/ffj.1201
Sukkharak, P., Ludwiczuk, A., Yoshinori Asakawa, & Gradstein, R. (2011). Studies on the genus thysananthus (marchantiophyta, Lejeuneaceae) 3. terpenoid chemistry and chemotaxonomy of selected species of thysananthus and dendrolejeunea fruticosa. Cryptogamie, Bryologie, 32(3), 199–209. https://doi.org/10.7872/cryb.v32.iss3.2011.199
Thakur, S., & Kapila, S. (2017). Seasonal changes in antioxidant enzymes, polyphenol oxidase enzyme, flavonoids and phenolic content in three leafy liverworts. Lindbergia, 5, 39–44. https://doi.org/10.25227/linbg.01076
Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines (Basel, Switzerland), 5(3), 93. https://doi.org/10.3390/medicines5030093
Wang, X., Cao, J., Dai, X., Xiao, J., Wu, Y., & Wang, Q. (2017). Total flavonoid concentrations of bryophytes from Tianmu Mountain, Zhejiang Province (China): Phylogeny and ecological factors. PloS one, 12(3), e0173003. https://doi.org/10.1371/journal.pone.0173003
Yildirim, A. B. (2020). Ultraviolet-B-induced changes on phenolic compounds, antioxidant capacity and HPLC profile of in vitro-grown plant materials in Echium Orientale L. Industrial Crops and Products, 153, 112584. https://doi.org/10.1016/j.indcrop.2020.112584

Authors

Nadhifa Tazkia Ramadhani
Windri Handayani
windri.h@sci.ui.ac.id (Primary Contact)
Yasman Yasman
Afiatry Putrika
Ramadhani, N. T., Handayani, W., Yasman, Y., & Putrika, A. (2024). Metabolite Profiling and Bioprospecting of Acrolejeunea fertilis (Reinw., Blume & Nees) Schiffn. from Kebun Raya Cibodas, West Java. BIOEDUSCIENCE, 8(1), 43–52. https://doi.org/10.22236/jbes/13187

Article Details