The Opportunity of Spent Bleaching Earth (Bentonite) and Silica Solubilizing Bacteria as Silica Source for Induction of Secondary Metabolites Production in Plants
Abstract
Background: CPO refining which produces solid waste namely spent bleaching earth (SBE) in large quantities can pollute the environment. SBE from bentonite ores contains large amounts of silica, so it can be an alternative source of silica minerals. Silica plays an important role in increasing plant resistance and bioactive plant compound products. Methods: The application of Si in plants can increase secondary metabolites such as phenolic and anti-fungal compounds in response to disease pathogens. However, the low solubility of silica makes silica not sufficiently available for plants. Using microorganisms as silica solubilizing bacteria helps increasing solubility of silica in the soil. Bacteria dissolve silica by removing organic acids and producing indole acetic acid (AAI), which stimulates root hairs. Results: This review presents the results of a study on the utilization of silica-rich SBE waste as a source of available silica for plants with solubilizing method using bacteria to increase plant growth and resistance, as well as increase plant secondary metabolite compounds. Conclusions: The application of silica solubilizing bacteria has been known to play an important role in providing silica for plants, through enzymatic mechanisms, namely the production of organic acids and extracellular polysaccharides.
Full text article
References
Agarie, S. et al (1998) 'Effects of Silicon on Tolerance to Water Deficit and Heat Stress in Rice Plants (Oryza sativa L.), Monitored by Electrolyte Leakage', Plant Production Science, 1, pp. 96–103. Available at: http://www.mendeley.com/research/geology-volcanic-history-eruptive-style-yakedake-volcano-group-central-japan/.
Ashari, M. L., Dermawan, D. and Sunarya, R. B. (2017) ‘Pemanfaatan Limbah Padat Spent Bleaching Earth Pada PT . SMART Tbk . Surabaya Sebagai Pengganti Agregat Halus pada Campuran Beton', Seminar Master 2017 PPNS, 1509, pp. 123–128.
Bhat, J. A. et al. (2019) 'Role of silicon in mitigation of heavy metal stresses in crop plants', Plants, 8(3), pp. 1–20. https://doi.org/10.3390/plants8030071.
Enggarini, W. and Marwani, E. (2006) ‘Pengaruh Cekaman Aluminium terhadap Kandungan Asam Organik dalam Kalus dan Pinak Tomat (Lycopersicon esculentum Mill.)', Jurnal AgroBiogen, 2(1), p. 24. https://doi.org/10.21082/jbio.v2n1.2006.p24-29.
Epstein, E. (1999) 'Silicon', Annu. Rev.Plant Physiol. Plant Mol. Biol., (50), pp. 641–664.
Fawe, A. et al. (1998) 'Silicon-mediated accumulation of flavonoid phytoalexins in cucumber', Phytopathology, 88(5), pp. 396–401. doi: 10.1094/PHYTO.1998.88.5.396.
Gardner and Barber (1981) 'Proteoid root morphology and function in Lupinus albus', Plant and soil, 147(1981), pp. 143–147.
Goto, M. et al. (2003) 'Protective effect of silicon on phenolic biosynthesis and ultraviolet spectral stress in rice crop', Plant Science, 164(3), pp. 349–356. https://doi.org/10.1016/S0168-9452(02)00419-3.
Husnain (2009) ‘Ketersediaan Silika (Si) Pada Tanah Sawah dan Metode Penetapan Si Tersedia di Dalam Tanah Serta Perbandingan Beberapa Metode Ekstraksinya', Prosiding Seminar dan Lokakarya Nasional Inovasi Sumberdaya, pp. 155–163.
Jones, L. H. P. and Handreck, K. A. (1967) 'Silica In Soils, Plants, and Animals', Advances in Agronomy, 19(C), pp. 107–149. https://doi.org/10.1016/S0065-2113(08)60734-8.
Kang, S. M. et al. (2017) 'Isolation and characterization of a novel silicate-solubilizing bacterial strain Burkholderia eburnea CS4-2 promotes japonica rice (Oryza sativa L. cv. Dongjin)', Soil Science and Plant Nutrition. Taylor & Francis, 63(3), pp. 233–241. https://doi.org/10.1080/00380768.2017.1314829.
Kheang, L. S. et al. (2006) 'A Study of Residual Oils Recovered from Spent Bleaching Earth: Their Characteristics and Applications', American Journal of Applied Sciences, 3(10), pp. 2063–2067. doi: 10.3844/ajassp.2006.2063.2067.
Kurabachew, H. and Wydra, K. (2014) 'Induction of systemic resistance and defence-related enzymes after elicitation of resistance by rhizobacteria and silicon application against Ralstonia solanacearum in tomato (Solanum lycopersicum)', Crop Protection. Elsevier Ltd, 57, pp. 1–7. https://doi.org/10.1016/j.cropro.2013.10.021.
Li, Y. C. et al. (2009) 'Antifungal activity of sodium silicate on Fusarium Sulphureum and Its effect on dry rot of potato tubers', Journal of Food Science, 74(5). doi: 10.1111/j.1750-3841.2009.01154.x.
Liu, W. et al. (2006) 'Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture', Environmental Geochemistry and Health, 28(1–2), pp. 133–140. https://doi.org/ 10.1007/s10653-005-9022-0.
Loveland, P. J. (1999) 'Clay Mineralogy at Rothamsted: 1934–1988', Clay Minerals, 34(1), pp. 165–183. https://doi.org/ 10.1180/claymin.1999.034.1.17.
Marschner, H. (1995) 'Mineral nutrition of higher plants, second edition', Field Crops Research, 46(1–3), pp. 184–185. https://doi.org/10.1016/0378-4290(96)84669-7.
Meena, V. D. et al. (2014) 'A case for silicon fertilization to improve crop yields in tropical soils', Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 84(3), pp. 505–518. https://doi.org/ 10.1007/s40011-013-0270-y.
Nathan, A. J. and Scobell, A. (2012) 'How China sees America', Foreign Affairs, 91(5), pp. 1689–1699. https://doi.org/ 10.1017/CBO9781107415324.004.
Nugrahani, R. A. and Ismiyati (2014) ‘Pemanfaatan Nanobentonit Sebagai Bahan Tambahan Pada Formula Grease, Kosmetik dan Nanokomposit', Seminar Nasional Sains dan Teknologi, (November), pp. 1–4.
Peera, S. K. P. G., Balasubramaniam, P. and Mahendran, P. P. (2016) 'Effect of silicate solubilizing bacteria and fly ash on silicon uptake and yield of rice under lowland ecosystem', Journal of Applied and Natural Science, 8(1), pp. 55–59. https://doi.org/ 10.31018/jans.v8i1.746.
Rémus-Borel, W., Menzies, J. G. and Bélanger, R. R. (2005) 'Silicon induces antifungal compounds in powdery mildew-infected wheat', Physiological and Molecular Plant Pathology, 66(3), pp. 108–115. doi: 10.1016/j.pmpp.2005.05.006.
Rodrigues, F. A. and Datnoff, L. E. (2005) ‘Silicon and rice disease management', Fitopatologia Brasileira, 30(5), pp. 457–469. doi: 10.1590/s0100-41582005000500001.
Rosmarkam dan Yuwono. 2002. Ilmu Kesuburan Tanah. Kanisius: Yogyakarta.
Ryan, at al. (2001), function and mechanism of oraganic anion exudation from plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: pp 527–60
SacaÅ‚a, E. (2009) 'Role of silicon in plant resistance to water stress', Journal of Elementology, 14(3), pp. 619–630. doi: 10.5601/jelem.2009.14.3.20.
Sahebi, M. et al. (2015) 'Importance of silicon and mechanisms of biosilica formation in plants', BioMed Research International, 2015. doi: 10.1155/2015/396010.
Santi, L. P., 2016. Pemanfaatan Bio-Silika untuk Meningkatkan Produktivitas dan Ketahanan. Mataram, Pusat Penelitian Bioteknologi dan Bioindustri Indonesia
Santi, L. P. and Goenadi, D. H. (2017) ‘Solubilization of silicate from quartz mineral by potential silicate solubilizing bacteria (Pelarutan silika asal mineral kuarsa oleh bakteri pelarut silika potensial )', E-Journal Menara Perkebunan, 85(2), pp. 95–104. doi: 10.22302/iribb.jur.mp.v85i2.247.
Simamora, C. J. K., Ramadhan, T. R., Hendarti, I. 2013. Persistensi Cendawan Metarhizium anisopliae (Metsch) Pada Tanah Gambut Serta Tingkat Patogenistasnya Terhadap Larva Tenebrio molitor (Linn.) di Laboratorium. Jurnal Sains Mahasiswa Pertanian, (2), 1.
Shetty R, F. X. J. B. S. N. J. J. J. H. N. M., 2011. Perubahan yang Diinduksi Silikon pada Asam Fenolik Antijamur, Flavonoid, dan gen jalur fenilpropanoid Kunci selama Interaksi antara Mawar Miniatur dan Patogen Biotrofik Podosphaera pannosa. Fisiologi Tumbuhan, Volume 157, pp. 2194-2205..
Sommer, M. et al. (2006) 'Silicon pools and fluxes in soils and landscapes - A review', Journal of Plant Nutrition and Soil Science, 169(3), pp. 310–329. doi: 10.1002/jpln.200521981.
Vandevivere, P., Welch, S. A. and Ullman, W. J. (1994) 'MICROBIAL', pp. 241–251.
Vasanthi, N., Saleena, L. M. and Raj, S. A. (2018) 'Silica Solubilization Potential of Certain Bacterial Species in the Presence of Different Silicate Minerals', Silicon, 10(2), pp. 267–275. doi: 10.1007/s12633-016-9438-4.
Watanabe, T. and Osaki, M. (2002) 'Mechanisms of adaptation to high aluminum condition in native plant species growing in acid soils: A review', Communications in Soil Science and Plant Analysis, 33(7–8), pp. 1247–1260. doi: 10.1081/CSS-120003885.
Yukamgo, E, dan N. W. Yuwono. 2007. Peran Silikon Sebagai Unsur Bermanfaat Pada Tanaman Tebu. Jurnal Ilmu Tanah dan Lingkungan, 7(2), pp. 103-116.
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.