Nipah Resistant Starch (Nypa fruticans): Modulation of Normal Microflora of Digestion, and Control of Diabetes

Vanya Aulia, Pellya Pachira, Monika Olvi, Cico Jhon Karunia Simamora

Abstract

Background: Gut microbiota in diabetics, the number is in an unstable condition, and sufferers tend to need foods low in calories not to raise blood sugar levels drastically. Nipah grown in coastal areas has a fairly high starch content, potentially as a source of resistant starch that a beneficial colon microbiota can ferment. The purpose of writing this review is to expand knowledge and provide information to the wider community regarding the potential of Nipah, which can be used as a source of new resistant starch that can be used in diabetes and modulation of normal microflora of the body. Method: This review writing procedure is done by searching various literature electronically, namely accessing International and National article searches and books through databases such as Google Scholar, ScienceDirect, and others. The collected data is then processed using Mendeley and then synthetic with narrative methods to conclude (interpretation). Results: Results in the writing of this review, namely obtained Nipah fruit flour with a high enough starch content, which is 35.66%, which has the potential as a source of resistant starch. Conclusion: The writing of this review is that the high content of Nipah starch can be developed into a cheap, resistant starch innovation specifically for people with diabetes.

Full text article

Generated from XML file

References

Abo, F. H., Ashour, Z. A., Shahin, R. Y., Ragab, S. B., & Attia, M. Y. (2013). Role of intestinal microflora ( Lactobacillus Acidophilus ) in phagocytic function of leukocytes in type 2 diabetic patients. Egyptian Journal of Medical Human Genetics, 14(1), 95–101. https://doi.org/10.1016/j.ejmhg.2012.10.003
Alcázar-Alay, S. C., & Meireles, M. A. A. (2015). Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology, 35(2), 215–236. https://doi.org/10.1590/1678-457X.6749
American Diabetes Association. (2013). Standards of Medical Care in Diabetes”2013. Diabetes Care 36, S11–S66. https://doi.org/10.2337/dc13-S011
Araújo, M. De, Carine, G., José, A., Marlon, í‰., Flores, M., Smanioto, J., Queiroz, L., Jacob-lopes, E., Raimundo, C., Grosso, F., Ragagnin, C., & Menezes, D. (2016). Effect of resistant starch (Hi-maise) on the survival of Lactobacillus acidophilus microencapsulated with sodium alginate. Journal of Functional Foods, 21, 321–329. https://doi.org/10.1016/j.jff.2015.12.025
Armas Ramos, R., Martí­nez Garcí­a, D., & Pérez Cruz, E. (2019). Fructanos tipo inulina: efecto en la microbiota intestinal, la obesidad y la saciedad. Gaceta Médica Espirituana, 21(2), 134–145.
Ashwar, B. A., Gani, A., Shah, A., Wani, I. A., & Masoodi, F. A. (2016). Preparation , health benefits and applications of resistant starch ” a review. 287–301. https://doi.org/10.1002/star.201500064
Bajzer, M., & Seeley, R. J. (2006). Physiology: obesity and gut flora. Nature, 444(7122), 1009–1010.
Belobrajdic, D. P., King, R. A., Christophersen, C. T., & Bird, A. R. (2012). Dietary resistant starch dose-dependently reduces adiposity in obesity-prone and obesity-resistant male rats. Nutrition & Metabolism, 9(1), 1. https://doi.org/10.1186/1743-7075-9-93
Bimo Setiarto, R. H., Widhyastuti, N., & Setiadi, D. (2018). Improvement Resistant Starch from Modified Sorghum Flour by Using Fermentation and Autoclaving-Cooling Cycling. Jurnal Ilmu Pertanian Indonesia, 23(1), 10–20. https://doi.org/10.18343/jipi.23.1.10
Bindels, L. B., Munoz, R. R. S., Gomes-neto, J. C., Mutemberezi, V., Martí­nez, I., Salazar, N., Cody, E. A., Quintero-villegas, M. I., Kittana, H., Reyes-gavilán, C. G. D. L., Schmaltz, R. J., Muccioli, G. G., Walter, J., & Ramer-tait, A. E. (2017). Resistant starch can improve insulin sensitivity independently of the gut microbiota. Microbiome, 1–16. https://doi.org/10.1186/s40168-017-0230-5
Birt, D. F., Boylston, T., Hendrich, S., Jane, J., Hollis, J., Li, L., Mcclelland, J., Moore, S., Phillips, G. J., Rowling, M., Schalinske, K., Scott, M. P., & Whitley, E. M. (2013). Resistant Starch"¯: Promise for Improving Human Health 1 , 2. 587–601. https://doi.org/10.3945/an.113.004325.TABLE
Ble-Castillo, J. L., Aparicio-Trapala, M. A., Francisco-Luria, M. U., Cordova-Uscanga, R., Rodriguez-Hernandez, A., Mendez, J. D., & Diaz-Zagoya, J. C. (2010). Effects of native banana starch supplementation on body weight and insulin sensitivity in obese type 2 diabetics. International Journal of Environmental Research and Public Health, 7(5), 1953–1962. https://doi.org/10.3390/ijerph7051953
Bodinham, C L, Smith, L., Thomas, E. L., Bell, J. D., Swann, J. R., Costabile, A., Russell-Jones, D., Umpleby, A. M., & Robertson, M. D. (2014). Efficacy of increased resistant starch consumption in human type 2 diabetes. Endocrine Connections, 3(2), 75–84. https://doi.org/10.1530/ec-14-0036
Bodinham, Caroline L, Frost, G. S., & Robertson, M. D. (2010). Acute ingestion of resistant starch reduces food intake in healthy adults British Journal of Nutrition. 917–922. https://doi.org/10.1017/S0007114509992534
Chen, L., Liu, R., Qin, C., Mph, Y. M., & Zhang, J. (2010). Short Communication Sources and intake of resistant starch in the Chinese diet. 19(February), 274–282.
Costa, E. S., França, C. N., Fonseca, F. A. H., Kato, J. T., Bianco, H. T., Freitas, T. T., Fonseca, H. A. R., Figueiredo Neto, A. M., & Izar, M. C. (2019). Beneficial effects of green banana biomass consumption in patients with pre-diabetes and type 2 diabetes: A randomised controlled trial. British Journal of Nutrition, 121(12), 1365–1375. https://doi.org/10.1017/S0007114519000576
Cox, L. M., & Blaser, M. . (2015). Antibiotics in early life and obesity. Nat. Rev. Endocrinol, 11(3), 182–190.
Cox, L. M., & Sohn, J. (2014). Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell, 158(4), 705–721.
Delcour, J. A., & Hoseney, R. C. (2010). Principles of Cereal Science and Technology. In 3rd edn. AACC International, Inc.
Division, M. (2018). Effect of lactic acid bacteria fermentation and autoclaving-cooling for resistant starch and prebiotic properties of modified taro flour. 25(August), 1691–1697.
Everard, A., & Cani, P. D. (2013). Diabetes, obesity and gut microbiota. Best Practice and Research: Clinical Gastroenterology, 27(1), 73–83. https://doi.org/10.1016/j.bpg.2013.03.007
Ferreira, C., Salminen, S., Lukasz, G., Brizuela, M., Sanchez, L., Carneiro, H., & Bonnet, M. (2011). Terminology Concepts of Probiotic and Prebiotic and Their Role in Human and Animal Health. Revista de Salud Animal, 33(3), 137–146.
Fuentes-Zaragoza, M.J. Riquelme-Navarrete, E. Sánchez-Zapata, J. A. P.-í. *. (2010). Resistant starch as functional ingredient"¯: A review. Food Research International. https://doi.org/10.1016/j.foodres.2010.02.004
Garg, N. K., Singh, A., & Biokimia, D. (2017). Jurnal Internasional Mikrobiologi Terkini dan Ilmu Terapan. 6, 2046–2057.
Gower, B. A., Bergman, R., Stefanovski, D., Darnell, B., Ovalle, F., Fisher, G., Sweatt, S. K., Resuehr, H. S., & Pelkman, C. (2016). Baseline insulin sensitivity affects response to high-amylose maise resistant starch in women"¯: a randomised, controlled trial. Nutrition & Metabolism, 13(2), 1–8. https://doi.org/10.1186/s12986-016-0062-5
Haenen, D., Zhang, J., da Silva, C. S., Bosch, G., van der Meer, I. M., van Arkel, J., van den Borne, J. J. G. C., Gutiérrez, O. P., Smidt, H., Kemp, B., Müller, M., & Hooiveld, G. E.
Han, J. L., & Lin, H. L. (2014). Intestinal microbiota and type 2 diabetes: From mechanism insights to therapeutic perspective. World Journal of Gastroenterology, 20(47), 17737–17745. https://doi.org/10.3748/wjg.v20.i47.17737
Haralampu, S. G. (2000). Resistant Starch - Review of The Physical Properties and Biological Impact of RS. J. Carbohydrate. Polym, 41, 285–292.
Hartstra, A. V., Bouter, K. E. C., Bäckhed, F., & Nieuwdorp, M. (2015). Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care, 38(1), 159–165. https://doi.org/10.2337/dc14-0769
Johnson, I. T., & Southgate, D. A. T. (1994). An Introduction to the Dietary Fibre Hypothesis. In: Dietary Fibre and Related Substances. In Food Safety Series. Springer.
Jyothsna, E., & Hymavathi, T. V. (2017). Resistant starch: Importance, categories, food sources and physiological effects. Journal of Pharmacognosy and Phytochem, 6(2), 67–69.
Keenan, M. J., Zhou, J., Mccutcheon, K. L., Raggio, A. M., Bateman, H. G., Todd, E., Jones, C. K., Tulley, R. T., Melton, S., Martin, R. J., Hegsted, M., Michael, J., Zhou, J. U. N., Kathleen, L., Raggio, A. M., Gale, H., Todd, E., Jones, C. K., Tulley, R. T., ... Hegsted, M. (2006). Effects of Resistant Starch , A Non-digestible Fermentable Fiber , on Reducing Body Fat.
Kim, B. S., Kim, H. S., Hong, J. S., Huber, K. C., Shim, J. H., & Yoo, S. H. (2013). Effects of amylosucrase treatment on molecular structure and digestion resistance of pre-gelatinised rice and barley starches. Food Chem, 138, 966–975. https://doi.org/10.1016/j.foodchem.2012.11.028.
Klopp, P., Vachoux, C., Amar, J., Chabo, C., Bermu, L. G., Lahtinen, S., Ouwehand, A., Langella, P., & Rautonen, N. (2011). Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes"¯: molecular mechanisms and probiotic treatment. 3, 559–572. https://doi.org/10.1002/emmm.201100159
Krumbeck, J. A., Maldonado-gomez, M. X., Ramer-tait, A. E., Hutkins, R. W., Ramer-tait, A. E., & Hutkins, R. W. (2016). Prebiotics and synbiotics"¯: Dietary strategies for improving gut health Prebiotics and synbiotics"¯: Dietary strategies for improving gut health. 32, 110–119. https://doi.org/10.1097/MOG.0000000000000249
Lau, Harper, W., A. Hanna, V., Woo, K. G., Dawson, J., François, L., MacCallum, M., Clement, S., Simpson, & Hopkins. (2008). Pharmacologic Management of Type 2 Diabetes. Canadian Journal of Diabetes, 32, 158–162.
Leszczynski, W. (Wroclaw A. U. (Poland) D. of F. S., & Technology). (2004). Resistant starch – classification, structure, production. Polish Journal of Food and Nutrition Sciences (Poland), 13, 37–50.
Lin, C. H., Chang, D. M., Wu, D. J., Peng, H. Y., & Chuang, L. M. (2015). Assessment of blood glucose regulation and safety of resistant starch formula-based diet in healthy normal and subjects with type 2 diabetes. Medicine (United States), 94(33), e1332. https://doi.org/10.1097/MD.0000000000001332
Maki, K. C., Pelkman, C. L., Finocchiaro, E. T., Kelley, K. M., Lawless, A. L., Schild, A. L., & Rains, T. M. (2012). Resistant Starch from High-Amylose Maize Increases Insulin Sensitivity in Overweight and Obese Men 1 – 3. 14. https://doi.org/10.3945/jn.111.152975.resistance
Manrique, P., Bolduc, B., & Walk, S. T. (2016). Healthy human gut phageome, U.S.A. Proc. Natl. Acad. Sci., 113(37), 10400–10405.
Masrukan. (2020). Potensi Modifikasi Pati Dengan Esterifikasi Sebagai Prebiotik. J. Agrotech., 1(1), 1–14.
Maziarz, M. P. (2013). Role of fructans and resistant starch in diabetes care. Diabetes Spectrum, 26(1), 35–39. https://doi.org/10.2337/diaspect.26.1.35
Microbiome, G., Brislawn, C. J., Bernhardt, J., Lamendella, R., Mcdermott, J. E., Ackermann, G., Knight, R., Riedel, K., Krauss, R. M., Schmitt-kopplin, P., & Jansson, K. (2017). crossm Impact of Dietary Resistant Starch on. 8(5), 1–16.
Nasrin, T. A. A., & Anal, A. K. (2014). Resistant starch III from culled banana and its functional properties in fish oil emulsion. Food Hydrocolloid, 35, 403–409. https://doi.org/10.1016/j.foodhyd.2013.06.019
Ojeda, P., Bobe, A., Dolan, K., Leone, V., & Martinez, K. (2016). Nutritional modulation of gut microbiota - the impact on metabolic disease pathophysiology. Journal of Nutritional Biochemistry, 28(March 2018), 191–200. https://doi.org/10.1016/j.jnutbio.2015.08.013
Onyango, C., Bley, T., Jacob, A., Henle, T., & Rohm, T. (2006). Influence of incubation temperature and time on resistant starch type III formation from autoclaved and acid-hydrolysed cassava starch. Carbohyd Polym, 66, 494–499. https://doi.org/10.1016/j.carbpol.2006.04.002
OrÅ¡olić, N., Jembrek, M. J., & Terzić, S. (2017). Honey and quercetin reduce ochratoxin A-induced DNA damage in the liver and the kidney through the modulation of intestinal microflora. Food and Agricultural Immunology, 28(5), 812–833. https://doi.org/10.1080/09540105.2017.1313819
Ozturk, S., Koksel, H., & Kahraman, K. (2011). Production of resistant starch from acid- modified amylotype starches with enhanced functional properties. J Food Eng, 103, 156–164. https://doi.org/10.1016/j.jfoodeng.2010.10.011.
Qin, J., Li, Y., & Cai, Z. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418), 55–60.
Rengadu, D., Gerrano, A. S., & Mellem, J. J. (2020). Original article Prebiotic effect of resistant starch from Vigna unguiculata ( L .) Walp . ( cowpea ) using an in vitro simulated digestion model. 332–339. https://doi.org/10.1111/ijfs.14304
Robertson, M. D. (2012). Dietary-resistant starch and glucose metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 15(4), 362–367. https://doi.org/10.1097/MCO.0b013e3283536931
Sabatino, A., Regolisti, G., Cosola, C., Gesualdo, L., & Fiaccadori, E. (2017). Intestinal Microbiota in Type 2 Diabetes and Chronic Kidney Disease. Current Diabetes Reports, 17(3). https://doi.org/10.1007/s11892-017-0841-z
Sahoo, G., Mulla, N. S. S., Ansari, Z. A., & Mohandas, C. (2012). Antibacterial activity of mangrove leaf extracts against human pathogent. Indian J. Pharm. Sci., 74(4), 349.
Sandberg, J. C., Björck, I. M. E., & Nilsson, A. C. (2017). Effects of whole grain rye , with and without resistant starch type 2 supplementation , on glucose tolerance , gut hormones , inflammation and appetite regulation in an 11 – 14 . 5 hour perspective"¯; a randomized controlled study in healthy subjects. 1–11. https://doi.org/10.1186/s12937-017-0246-5
Sari, D. K. (2018). Pati Tahan Cerna untuk Pencegahan Diabetes Tipe-2. Pustaka Unpad.Ac.Id Program Studi Ilmu Kesehatan Masyarakat Program Pascasarjana Fkultas Kedokteran Universitas Padjajaran, Bandung, Indonesia, 1–11.
Sedighi, M., Razavi, S., Navab-Moghadam, F., Khamseh, M. E., Alaei-Shahmiri, F., Mehrtash, A., & Amirmozafari, N. (2017). Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals. Microbial Pathogenesis, 111(September), 362–369. https://doi.org/10.1016/j.micpath.2017.08.038
Shen, L., Keenan, M. J., Martin, R. J., Tulley, R. T., Raggio, A. M., Mccutcheon, K. L., & Zhou, J. (2009). Dietary Resistant Starch Increases Hypothalamic POMC Expression in Rats. 17(1), 40–45. https://doi.org/10.1038/oby.2008.483
Shi, M. M., & Gao, Q. Y. (2011). Physicochemical properties, structure and in vitro digestion of resistant starch from waxy rice starch. Carbohyd Polyme, 84, 1151–1157. https://doi.org/10.1016/j. carbpol.2011.01.004.
Slawinska, A., Dunislawska, A., Plowiec, A., Radomska, M., Lachmanska, J., Siwek, M., Tavaniello, S., & Maiorano, G. (2019). Modulation of microbial communities and mucosal gene expression in chicken intestines after galactooligosaccharides delivery In Ovo. PLoS ONE, 14(2), 1–23. https://doi.org/10.1371/journal.pone.0212318
Susanto, E. T., Rejeki, S., Pertanian, F., & Oleo, U. H. (2018). Pengaruh Penambahan Minyak Sawit Dalam Proses Penanakan Nasi Pada Rice Cooker Terhadap Pembentukan Pati Resisten 5 Untuk Penderita Diabetes Melitus ( Dm ) Tipe 2. J. Sains Dan Teknologi Pangan (JSTP), 3(4), 1460–1469.
Sutrisno, A. R. (2015). Karakteristik Sirup Glukosa Dari Tepung Ubi Ungu ( Kajian Suhu Likuifikasi Dan Konsentrasi Α -Amilase ): Kajian Pustaka Glucose Syrup Characteristic from Sweet Potato Flour ( Study on Liquefaction Temperature and Enzyme Concentration ): A Review. Jurnal Pangan Dan Agroindustri, 3(4), 1531–1537.
Tabuchi, M., Ozaki, M., Tamura, A., Yamada, N., Ishida, T., Hosoda, M., & Hosono, A. (2003). Antidiabetic effect of Lactobacillus GG in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem., 67, 1421–1424.
Tachon, S., Zhou, J., Keenan, M., Martin, R., & Marco, M. L. (2013). responses. 83, 299–309. https://doi.org/10.1111/j.1574-6941.2012.01475.x
Ulyarti, Nazarudin, & Sari, D. W. (2017). The study of functional properties of Nypa fruticans flour. AIP Conference Proceedings, 1823(March). https://doi.org/10.1063/1.4978100
Wang, C., Yin, Y., Cao, X., & Li, X. (2016). Effects of Maydis stigma polysaccharide on the intestinal microflora in type-2 diabetes. Pharmaceutical Biology, 54(12), 3086–3092. https://doi.org/10.1080/13880209.2016.1211153
Wang, J., Zheng, J., Shi, W., Du, N., Xu, X., Zhang, Y., Ji, P., Zhang, F., Jia, Z., Wang, Y., Zheng, Z., Zhang, H., & Zhao, F. (2018). Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut, 67(9), 1614–1625. https://doi.org/10.1136/gutjnl-2018-315988
Widanarni, Jeanni , I.N., & S. (2014). Prebiotik, probiotik, dan sinbiotik untuk mengendalikan koinfeksi Vibrio harveyi dan IMNV pada udang vaname. Jurnal Akuakultur Indonesia, 13(1), 11–20.
Widiastini, T. A., Sakinah, E. N., Nurdian, Y., & Firdaus, J. (2018). Type 3 Resistant Starch Effect of Cassava (Manihot esculenta Crantz) on Fasting Blood Glucose in Diabetes Mellitus Wistar Rat Models. Journal of Agromedicine and Medical Sciences, 4(3), 133. https://doi.org/10.19184/ams.v4i3.6469
Yono, J. M., Yu, K., Donaldson, G. P., Shastri, G. G., Ann, P., Ma, L., Nagler, C. R., Ismagilov, R.F., Mazmanian, S. K., & Hsiao, E. Y. (2015). Indigenous bacteria from the gut mi- crobiota regulate host serotonin biosynthesis. Cell, 161(2), 264–276.
Zaman, S. A., & Sarbini, S. R. (2016). The potential of resistant starch as a prebiotic. Crit Rev Biotechnol, 36(3), 578–584. https://doi.org/10.3109/07388551.2014.993590.
Zhang, C., Zhang, M., Wang, S., Han, R., Cao, Y., Hua, W., Mao, Y., Zhang, X., Pang, X., Wei, C., Zhao, G., Chen, Y., & Zhao, L. (2010). Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J, 4(2), 232–241.
Zhang, L., Li, H. T., Shen, L., Fang, Q. C., Qian, L. L., & Jia, W. P. (2015). Effect of dietary resistant starch on prevention and treatment of obesity-related diseases and its possible mechanisms. Biomedical and Environmental Sciences, 28(4), 291–297. https://doi.org/10.3967/bes2015.040
Zhang, Y., & Zhang, H. (2013). Microbiota associated with type 2 diabetes and its related complications. Food Science and Human Wellness, 2(3–4), 167–172. https://doi.org/10.1016/j.fshw.2013.09.002
Zhao, L. (2013). The gut microbiota and obesity: from correlation to causality. Nat. Rev. Microbiol, 11(9), 639–647.
Zhou, Y., Wei, Y., Yan, B., Zhao, S., & Zhou, X. (2020). Regulation of tartary buckwheat-resistant starch on intestinal microflora in mice fed with high-fat diet. Food Science and Nutrition, 8(7), 3243–3251. https://doi.org/10.1002/fsn3.1601
Zhu, Y., Dong, L., Huang, L., Shi, Z., Dong, J., Yao, Y., & Shen, R. (2020). Effects of oat β-glucan, oat resistant starch, and the whole oat flour on insulin resistance, inflammation, and gut microbiota in high-fat-diet-induced type 2 diabetic rats. In Journal of Functional Foods, 69. https://doi.org/10.1016/j.jff.2020.103939

Authors

Vanya Aulia
Pellya Pachira
Monika Olvi
Cico Jhon Karunia Simamora
csomamora@faperta.untan.ac.id (Primary Contact)
Aulia, V. ., Pachira, P., Olvi, M. ., & Simamora, C. J. K. . (2021). Nipah Resistant Starch (Nypa fruticans): Modulation of Normal Microflora of Digestion, and Control of Diabetes. BIOEDUSCIENCE, 5(3), 224–233. https://doi.org/10.22236/j.bes/536899

Article Details

Most read articles by the same author(s)