Effect of Calcium Chloride Concentration on Viability and Swelling Power of Paenibacillus polymyxa Encapsulated Beads in Vitro

Zulfa Novita Sari, Hery Nirwanto, Safira Rizka Lestari

Abstract

Background: Paenibacillus polymyxa is a potent antagonist that can be utilized as a biological agent. The use of biological agents has gained interest among farmers, but their application in liquid formulations has not consistently maintained the optimal stability and viability of microorganisms. One promising approach to overcome this problem is bioencapsulation, which is a method of wrapping biological agents to protect bacteria in the soil and increase their efficiency. This study aims to assess the encapsulation efficiency, measure the viability of microorganisms in the beads, and determine the difference in swelling power of beads made with various concentrations of calcium chloride (CaCl2) as a binding agent. Method: Beads were produced using the extrusion method by combining Paenibacillus polymyxa suspension, sodium alginate suspension, and adding CaCl2 at concentrations of 1%, 3%, and 5%. Results: The results showed that different CaCl2 concentrations can affect the viability of Paenibacillus polymyxa in beads. Beads made with CaCl2 at 3% concentration were the best results in the encapsulation efficiency test compared to beads made with 1% and 5% CaCl2 binders. In comparison, beads with 3% and 5% CaCl2 concentrations were able to maintain the viability of microorganisms at a higher level and for a longer time than beads using CaCl2 at 1% concentration. The decrease in viability and swelling power of the beads is thought to be caused by the carrier material used and the storage conditions. Conclusion: Bead treatment with 3% calcium chloride concentration was the best treatment for encapsulation efficiency in absorbing Paenibacillus polymyxa, amounting to 98.21%.

Full text article

Generated from XML file

References

Angela, A., & Marzuki, I. (2021). Kapasitas Bioadsorpsi Bakteri Simbiosis Spons Laut Terhadap Kontaminan Logam Berat. KOVALEN: Jurnal Riset Kimia, 7(1), 12–22. https://doi.org/10.22487/kovalen.2021.v7.i1.15439
Cappucino, James G. and S. Natalie. 2001. Microbiology Laboratory Manual. Sixth edition. Benjamin Cummings. San Francisco.
Choi, J. W., Yang, K. S., Kim, D. J., & Lee, C. E. (2009). Adsorption of zinc and toluene by alginate complex impregnated with zeolite and activated carbon. Current Applied Physics, 9(3), 694–697. https://doi.org/10.1016/j.cap.2008.06.008
Haspon, H., Dini, I. R., & Rahman, A. (2020). Uji Formulasi Pupuk Hayati Cair dengan Penambahan Bacillus Cereus terhadap Pertumbuhan dan Hasil Tanaman Jagung Manis (Zea Mays Saccharata Sturt) Liquid Biological Fertilizer Formulations Test with the Addition of Bacillus cereus on Growth and Yield of Sw. Agrotekma Jurnal Agroteknologi dan Ilmu Pertanian, 5(1), 31–41. https://doi.org/10.31289/agr.v5i1.4181
Heidebach, T., Först, P., & Kulozik, U. (2012). Microencapsulation of Probiotic Cells for Food Applications. Critical Reviews in Food Science and Nutrition, 52(4), 291–311. https://doi.org/10.1080/10408398.2010.499801
Huq, T., Khan, A., Khan, R. A., Riedl, B., & Lacroix, M. (2013). Encapsulation of Probiotic Bacteria in Biopolymeric System. Critical Reviews in Food Science and Nutrition, 53(9), 909–916. https://doi.org/10.1080/10408398.2011.573152
Ibrahim, S. M., Abou El Fadl, F. I., & El-Naggar, A. A. (2014). Preparation and Characterization of Crosslinked Alginate-CMC Beads for Controlled Release of Nitrate Salt. Journal of Radioanalytical and Nuclear Chemistry, 299(3), 1531–1537. https://doi.org/10.1007/s10967-013-2820-4
Jannah, M., Marlina, M., & Hakim, L. (2023). Potensi Bakteri Endofit Paenibacillus polymyxa dalam Menghambat Beberapa Patogen Tanaman Padi (Oryza sativa L.) In Vitro. Jurnal Ilmiah Mahasiswa (JIM) Pertanian, 8(4), 953–963.
John, R. P., Tyagi, R. D., Brar, S. K., Surampalli, R. Y., & Prévost, D. (2011). Bio-encapsulation of Microbial Cells for Targeted Agricultural Delivery. Critical Reviews in Biotechnology, 31(3), 211–226. https://doi.org/10.3109/07388551.2010.513327
Khan, N. H., Korber, D. R., Low, N. H., & Nickerson, M. T. (2013). Development of Extrusion-Based Legume Protein Isolate-Alginate Capsules for the Protection and Delivery of the Acid-Sensitive Probiotic, Bifidobacterium adolescentis. Food Research International, 54(1), 730–737. https://doi.org/10.1016/j.foodres.2013.08.017
Khazaeli, P., & Hassanzadeh, A. P. & F. (2008). Formulation of Ibuprofen Beads by Ionotropic Gelation Payam. Journal of Pharmaceutical Research, 7(3), 163–170.
Kim, I. Y., Pusey, P. L., Zhao, Y., Korban, S. S., Choi, H., & Kim, K. K. (2012). Controlled Release of Pantoea agglomerans E325 for Biocontrol of Fire Blight Disease of Apple. Journal of Controlled Release, 161(1), 109–115. https://doi.org/10.1016/j.jconrel.2012.03.028
Munawwaroh, M. J. (2019). Sintesis dan Karakterisasi Beads Alginat-Karboksimetil Selulosa dari Batang Jagung Menggunakan Variasi CaCl2. 86. Universitas Islam Negeri Maulana Malik Ibrahim
Ratnasari, N., Kusumawati, N., & Kuswardani, I. (2014). Pengaruh Konsentrasi Natrium Alginat sebagai Penjerat Sel Lactobacillus Acidophilus Fncc 0051 dan Lama Penyimpanan terhadap Jumlah Sel Yang Terlepas dan Karakter (Effect of sodium alginate concentration in Lactobacillus acidophilus FNCC 0051 entrapment a.
Rojas-Sánchez, B., Guzmán-Guzmán, P., Morales-Cedeño, L. R., Orozco-Mosqueda, M. del C., Saucedo-Martínez, B. C., Sánchez-Yáñez, J. M., Fadiji, A. E., Babalola, O. O., Glick, B. R., & Santoyo, G. (2022). Bioencapsulation of Microbial Inoculants: Mechanisms, Formulation Types, and Application Techniques. Applied Biosciences, 1(2), 198–220. https://doi.org/10.3390/applbiosci1020013
Rokka, S., & Rantamäki, P. (2010). Protecting Probiotic Bacteria by Microencapsulation: Challenges for Industrial Applications. European Food Research and Technology, 231(1), 1–12. https://doi.org/10.1007/s00217-010-1246-2
Rumbiak, J. E. R., & Hilal1, S. (2022). Viabilitas Formula Rizobakteria yang disimpan pada Suhu Rendah Selama Satu Tahun. Agroekotek, 14(1), 68–79.
Setiaji, J., Johan, T. I., & Widantari, M. (2015). Pengaruh Gliserol pada Media Tryptic Soy Broth (TSB) terhadap Viabilitas Bakteri Aeromonas hydrophila. Dinamika Pertanian, 30(1), 83-91.
Szczech, M., & Maciorowski, R. (2016). Microencapsulation Technique with Organic Additives for Biocontrol Agents. Journal of Horticultural Research, 24(1), 111–122. https://doi.org/10.1515/johr-2016-0013
Weselowski, B., Nathoo, N., Eastman, A. W., MacDonald, J., & Yuan, Z. C. (2016). Isolation, Identification, and Characterization of Paenibacillus polymyxa CR1 with Potentials for Biopesticide, Biofertilization, Biomass Degradation, and Biofuel Production. BMC Microbiology, 16(1), 1–10. https://doi.org/10.1186/s12866-016-0860-y
Zamilah, M., Ruhimat, U., & Setiawan, D. (2020). Media Alternatif Kacang Tanah untuk Pertumbuhan Bakteri. Journal of Indonesian Medical Laboratory and Science (JoIMedLabS), 1(1), 57–65. https://doi.org/10.53699/joimedlabs.v1i1.11

Authors

Zulfa Novita Sari
Hery Nirwanto
herry_n@upnjatim.ac.id (Primary Contact)
Safira Rizka Lestari
Sari, Z. N., Nirwanto, H., & Lestari, S. R. (2025). Effect of Calcium Chloride Concentration on Viability and Swelling Power of Paenibacillus polymyxa Encapsulated Beads in Vitro. BIOEDUSCIENCE, 9(2), 206–213. https://doi.org/10.22236/jbes/16364

Article Details