Pengaruh Porositas pada Perubahan Tekanan Campuran Gas CO₂ dan O₂ Terhadap Batuan Slag Nikel
Kata Kunci:
Porosity, Nickel slag, Gas pressure, CO₂–O₂ mixture, Carbon absorptionAbstrak
Porosity in solid materials plays a crucial role in controlling gas pressure behavior and diffusion, particularly in carbon absorption processes within Carbon Capture and Storage (CCS) systems. This study aims to investigate the effect of porosity variations on pressure changes of CO₂–O₂ gas mixtures in nickel slag rocks as potential carbon-absorbing materials. The research method employed a literature review based on various studies discussing the physicochemical characteristics of nickel slag, carbonation mechanisms, and gas interactions within porous structures. Key parameters analyzed include pore size distribution, channel connectivity, and diffusion rate affecting pressure dynamics during gas–solid reactions. The results indicate that highly porous nickel slag experiences a faster pressure drop due to more intensive carbonation reactions, whereas low porosity limits gas transport and slows the process. In conclusion, porosity is a dominant factor governing pressure dynamics and the efficiency of CO₂ capture in nickel slag materials
Unduhan
Referensi
X. Wang, “RESEARCH ARTICLE CO 2 uptake of slag-blended concrete,” no. 2019, pp. 48890–48904, 2021.
“Study on the Carbon Dioxide Sequestration Properties of.pdf.”
B. Cieslik et al., “Nickel mobilization during single-stage aqueous mineral carbonation of serpentinized peridotite at 185 °c and PCO2 of 100bar,” J. CO2 Util., vol. 97, no. May, 2025, doi: 10.1016/j.jcou.2025.103119.
M. S. Kothari, A. Aly Hassan, A. El-Dieb, and H. El-Hassan, “Modelling and optimization of carbon dioxide sequestration potential of carbide slag waste,” Case Stud. Chem. Environ. Eng., vol. 12, no. June, p. 101250, 2025, doi: 10.1016/j.cscee.2025.101250.
H. Hamedi, G. Gonzales-Calienes, and J. Shadbahr, “Ex Situ Carbon Mineralization for CO2 Capture Using Industrial Alkaline Wastes—Optimization and Future Prospects: A Review,” Clean Technol., vol. 7, no. 2, pp. 1–37, 2025, doi: 10.3390/cleantechnol7020044.
M. Norouzpour, R. M. Santos, and Y. W. Chiang, “Activation methods for enhancing CO2 mineralization via mine tailings—A critical review,” Carbon Capture Sci. Technol., vol. 15, no. May, p. 100430, 2025, doi: 10.1016/j.ccst.2025.100430.
L. A. Bullock, R. H. James, J. Matter, P. Renforth, and D. A. H. Teagle, “Global Carbon Dioxide Removal Potential of Waste Materials From Metal and Diamond Mining,” Front. Clim., vol. 3, no. July, pp. 1–12, 2021, doi: 10.3389/fclim.2021.694175.
B. J. B. Razote, M. K. M. Maranan, R. C. P. Eusebio, R. D. Alorro, A. B. Beltran, and A. H. Orbecido, “Determination of the carbon dioxide sequestration potential of a nickel mine mixed dump through leaching tests,” Energies, vol. 12, no. 15, pp. 1–19, 2019, doi: 10.3390/en12152877.
I. Walker, R. Bell, and K. Rippy, “Mineralization of alkaline waste for CCUS,” npj Mater. Sustain., vol. 2, no. 1, pp. 1–17, 2024, doi: 10.1038/s44296-024-00031-x.
H. Radfarnia et al., “ Experimental Study on Indirect CO 2 Mineralization of Industrial Solid Wastes: Electric Arc Furnace (EAF) Slag and Nickel Mine Tailings ,” ACS Omega, vol. 10, no. 36, pp. 41571–41585, 2025, doi: 10.1021/acsomega.5c05128.
H. Radfarnia et al., “Experimental Study on Indirect CO 2 Mineralization of Industrial Solid Wastes : Electric Arc Furnace ( EAF ) Slag and Nickel Mine Tailings,” 2025, doi: 10.1021/acsomega.5c05128.
A. Adediran, “Mineralogy and glass content of Fe-rich fayalite slag size fractions and their effect on alkali activation and leaching of heavy metals,” no. September, pp. 287–300, 2021, doi: 10.1002/ces2.10107.
O. Separation, “Crystallization and Beneficiation of Magnetite for Iron Recycling from Nickel Slags by,” no. 3, 2017, doi: 10.3390/met7080321.
I. Siemens and F. Cell, “Residence Time Distribution Measurements and Modeling in an Industrial-Scale Siemens Flotation Cell,” 2023.
E. Quéheille, M. Dauvergne, and A. Ventura, “Prospective Life Cycle Assessment at Early Stage of Product Development : Application to Nickel Slag Valorization Into Cement for the Construction Sector,” vol. 7, no. October, pp. 1–14, 2021, doi: 10.3389/fbuil.2021.743948.
C. Julcour, L. Cassayre, I. Benhamed, J. Diouani, and F. Bourgeois, “Insights Into Nickel Slag Carbonation in a Stirred Bead Mill,” Front. Chem. Eng., vol. 2, no. November, pp. 1–15, 2020, doi: 10.3389/fceng.2020.588579.
H. Lee et al., “Carbon Dioxide Capture and Product Characteristics Using Steel Slag in a Mineral Carbonation Plant,” pp. 1–11, 2023.
R. E. Owen et al., “Carbon Capture Science & Technology Visualising coke-induced degradation of catalysts used for CO 2 -reforming of methane with X-ray nano-computed tomography,” Carbon Capture Sci. Technol., vol. 5, no. September, p. 100068, 2022, doi: 10.1016/j.ccst.2022.100068.
N. F. Material, D. Bochenek, P. Niemiec, and D. Brzezi, “Magnetoelectric Properties of Multiferroic Composites Based,” 2024.
S. Wang et al., “A Review on the Carbonation of Steel Slag : Properties , Mechanism , and Application,” pp. 1–17, 2024.
P. Domain, “Geochemical and Dynamic Model of Repeated Hydrothermal Injections in Two Mesozoic,” pp. 1–24.
A. Baras, J. Li, W. Ni, Z. Hussain, and M. Hitch, “Evaluation of Potential Factors Affecting Steel Slag Carbonation,” Processes, vol. 11, no. 9, 2023, doi: 10.3390/pr11092590.
L. Sun, H. Wang, and Y. Wang, “Properties of Carbonated Steel Slag Admixture in the Cementitious System,” vol. 2023, 2023, doi: 10.1155/2023/5547591.
A. de Schutter, L. Ceyssens, G. Granata, and T. Van Gerven, “Improving the Carbonation of Steel Slags Through Concurrent Wet Milling,” J. Sustain. Metall., vol. 10, no. 3, pp. 1759–1773, 2024, doi: 10.1007/s40831-024-00895-2.
F. Zhu et al., “Experimental Investigation and Mechanism Analysis of Direct Aqueous Mineral Carbonation Using Steel Slag,” 2024.
C. Science, “A New Approach to Use of Traction Power Network in Poland,” 2024.
M. S. Kothari, A. A. Hassan, A. El Dieb, and H. El Hassan, “Direct mineral carbonation of carbide slag waste in fixed bed reactor : comparison of dry and wet route,” 2025, doi: 10.1186/s42834-025-00251-3.
A. Krammer, K. Salbrechter, and M. Lehner, “High-capacity CO / CO 2 methanation reactor design strategy based on 1D PFR modelling and experimental investigation,” J. CO2 Util., vol. 80, no. January, p. 102661, 2024, doi: 10.1016/j.jcou.2023.102661.
M. Tu et al., “Aqueous Carbonation of Steel Slag : A Kinetics Study,” vol. 55, no. 11, pp. 2509–2514, 2015.
L. Li, T. Chen, and X. Gao, “Pr ep rin ot pe er re v iew Pr t n ot pe er v ed,” 2015.
M. Ben et al., “Impact of nutrients supply and pH changes on the elimination of hydrogen sulfide , dimethyl disulfide and ethanethiol by biofiltration,” Chem. Eng. J., vol. 258, pp. 420–426, 2014, doi: 10.1016/j.cej.2014.07.085.
S. Lin et al., “applied sciences Exploring the Effect of Moisture on CO 2 Diffusion and Particle Cementation in Carbonated Steel Slag,” 2024.
M. Quaghebeur, P. Nielsen, L. Horckmans, D. Van Mechelen, and P. Nielsen, “Accelerated Carbonation of Steel Slag Compacts: Development of High-Strength Construction Materials,” vol. 3, no. December, 2015, doi: 10.3389/fenrg.2015.00052.
D. R. De Lacq, P. L. Llewellyn, R. Sustainability, L. Fernando, and M. Franco, “F UNDAMENTAL OF CO 2 A DSORPTION AND D IFFUSION IN,” pp. 1–23, 2025.
B. Petrovic, M. Gorbounov, and S. M. Soltani, “Carbon Capture Science & Technology Impact of Surface Functional Groups and Their Introduction Methods on the Mechanisms of CO 2 Adsorption on Porous Carbonaceous Adsorbents,” Carbon Capture Sci. Technol., vol. 3, no. March, p. 100045, 2022, doi: 10.1016/j.ccst.2022.100045.
M. E. Leonard, “E NGINEERING G AS D IFFUSION E LECTRODES FOR,” 2021.
J. Carlos, R. Allam, U. Kingdom, K. S. Lackner, and U. States, “Mineral carbonation and industrial uses of carbon dioxide”.
H. Herzog, “Carbon Sequestration via Mineral Carbonation : Overview and Assessment Howard Herzog,” no. March, 2002.
V. Romanov, Y. Soong, C. Carney, G. Rush, B. Nielsen, and W. O. Connor, “Mineralization of Carbon Dioxide : Literature Review,” pp. 1–53.
Y. Luoyang, H. Wang, J. Li, B. Chen, X. Li, and Z. Guotao, “Mechanism of one ‑ step hydrothermal nitric acid treatment for producing high adsorption capacity porous materials from coal gasification fine slag,” Sci. Rep., no. 0123456789, pp. 1–17, 2024, doi: 10.1038/s41598-024-72114-7.
Q. Zhao, C. Liu, X. Mei, H. Saxén, and R. Zevenhoven, “This is an electronic reprint of the original article . This reprint may differ from the original in pagination and typographic detail . Research progress of steel slag-based carbon sequestration Please cite the original version : Research progress of steel slag-based carbon sequestration,” Fundam. Res., vol. 5, no. 1, pp. 282–287, 2025, doi: 10.1016/j.fmre.2022.09.023.
M. C. Bignozzi, A. Allegri, and A. D. Pozzo, “Carbonated Industrial Waste by CO2 mineralization as New Constituent for Cements,” pp. 2–5, 2025.
U. Rukiah, A. Abd, and F. Mohd, “Journal of Materials and Temperature-Driven Carbonation of Steel Slag for Carbon Capture and Storage ( CCS ) Applications,” vol. 04, pp. 56–62, 2026, doi: 10.61552/JME.2026.01.006.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2026 Prosiding Seminar Nasional Teknoka

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Supported by :

