Pengaruh Partisi Antar Layer Butiran Terhadap Gas CO₂ Pada Batuan Slag Nikel

Authors

  • Amanda Setiawan Universitas Muhammadiyah Prof. Dr. Hamka
  • Dan Mugisidi Universitas Muhammadiyah Prof. Dr. Hamka

Keywords:

Grain layers, nickel slag, CO2 absorption.

Abstract

The absorption of CO₂ gas by solid materials is an important approach in the development of Carbon Capture and Storage (CCS) technology. Nickel slag, as a solid waste product of nickel smelting, has the potential to be used as a carbon absorbent material as well as a construction material. This study analyzes the effect of inter-particle layer partitions in nickel slag on CO₂ absorption and its implications for slag utilization. The method used is a literature review of journal articles and proceedings discussing the physicochemical properties of nickel slag, types of partitions, diffusion pathways, and carbonation performance. The results of the study show that the presence of solid-solid, solid-liquid, pore/crack, and chemical partitions expands the specific surface area, provides active reaction sites, and forms effective diffusion pathways, thereby increasing the capacity and rate of CO₂ absorption. Engineering the morphology of partitions through mechanochemical activation or chemical treatment is an important strategy for optimizing the function of nickel slag in supporting the application of CCS and the circular economy of industry.

Downloads

Download data is not yet available.

References

A. Setyani, Y. Amalia, and H. R. Wardhana,

“Potensi dan Karakterisasi Limbah Metalurgi ‘Slag Nikel Pig Iron,’” J. Metall. Eng. Process. Technol., vol. 3, no. 2, p. 132, 2023, doi: 10.31315/jmept.v3i2.8579.

S. Chelluri, N. Hossiney, S. Chandra, P. Bekoe, and M. Tia, “A Review of the Performance Properties of Geopolymer Pavement-Quality Concrete,” Constr. Mater., vol. 5, no. 3, pp. 1–32, 2025, doi: 10.3390/constrmater5030049.

A. C. Setyabrata, A. Maksum, A. B. Prasetyo, B. Priyono, and J. Wahyuadi Soedarsono, “Effect of Sodium Carbonate on the Reduction Process of Nickel Slag from Sulawesi,” IOP Conf. Ser. Mater. Sci. Eng., vol. 553, no. 1, 2019, doi: 10.1088/1757-899X/553/1/012028.

R. S. Edwin, E. Ngii, R. Talanipa, F. Masud, and R. Sriyani, “Effect of nickel slag as a sand replacement in strength and workability of concrete,” IOP Conf. Ser. Mater. Sci. Eng., vol. 615, no. 1, 2019, doi: 10.1088/1757-899X/615/1/012014.

X. Li, X. Zhang, X. Zang, and X. Xing, “Structure and phase changes of nickel slag in oxidation treatment,” Minerals, vol. 10, no. 4, pp. 1–12, 2020, doi: 10.3390/min10040313.

S. Pelupessy, Z. Mufrodi, and T. E. Suharto, “Mechanical Characteristics of Concrete with Addition of Nickel Slag Waste as Aggregates,” Indones. J. Chem. Eng., vol. 2, no. 2, pp. 62–69, 2024, doi: 10.26555/ijce.v2i2.1102.

R. T. Bethary, D. E. Intari, and A. H. Mutaqin, “Utilization of Nickel Slag as an Aggregate Substitute in Asphalt Pavement Mixtures (AC-BC),” Fondasi J. Tek. Sipil, vol. 12, no. 2, p. 292, 2023, doi: 10.36055/fondasi.v12i2.21973.

F. Rosalina, D. Tjahyandari, and D. Darmawan, “The Potential Of Nickel Slag with Humic Substance Addition as Ameliorating Materials on Gajrug Red-Yellow Podzolic,” SAINS TANAH - J. Soil Sci. Agroclimatol., vol. 15, no. 1, p. 61, 2018, doi: 10.15608/stjssa.v15i1.17814.

M. Maryudi, S. D. A. Candra, M. Azhar, and A. Yahya, “Extraction Of Iron (Fe) as A Valuable Metal Content of Nickel Slag Waste,” Indones. J. Chem. Eng., vol. 1, no. 2, pp. 80–85, 2023, doi: 10.26555/ijce.v1i2.658.

M. González-Locarno, Y. M. Pautt, A. Albis, E. F. López, and C. D. G. Tovar, “Assessment of chitosan-rue (Ruta graveolens l.) essential oil-based coatings on refrigerated cape gooseberry (Physalis peruviana L.) quality,” Appl. Sci., vol. 10, no. 8, 2020, doi: 10.3390/APP10082684.

K. Bru, A. Seron, A. Morillon, D. Algermissen, C. Lerouge, and N. Menad, “Characterization of a chromium-bearing carbon steel electric arc furnace slag after magnetic separation to determine the potential for iron and chromium recovery,” Minerals, vol. 12, no. 1, 2022, doi: 10.3390/min12010047.

K. Yamini, L. Dyer, B. Lim, and R. D. Alorro, “ Technospheric Mining of Cobalt and Nickel from Waste Nickel Furnace Slag by Ascorbic Acid-Assisted Citric Acid Leaching,” Recycling, vol. 10, no. 2, 2025, doi: 10.3390/recycling10020043.

D. Attah-Kyei et al., “A Crucial Step Toward Carbon Neutrality in Pyrometallurgical Reduction of Nickel Slag,” J. Sustain. Metall., vol. 9, no. 4, pp. 1759–1776, 2023, doi: 10.1007/s40831-023-00763-5.

E. Urtnasan, A. Kumar, and J. P. Wang, “Artificial Slags with Modulated Properties for Controlled Nickel Dissolution in Smelting Process,” Trans. Indian Inst. Met., vol. 77, no. 9, pp. 2293–2302, 2024, doi: 10.1007/s12666-024-03304-0.

W. J. Cho, M. J. Kim, and J. S. Kim, “Study on the pore structure characteristics of ferronickel-slag-mixed ternary-blended cement,” Materials (Basel)., vol. 13, no. 21, pp. 1–12, 2020, doi: 10.3390/ma13214863.

L. M. Coelho, A. C. R. Guimarães, C. R. C. L. Alves Moreira, G. P. P. dos Santos, S. N. Monteiro, and P. H. P. M. da Silveira, “Feasibility of Using Ferronickel Slag as a Sustainable Alternative Aggregate in Hot Mix Asphalt,” Sustain., vol. 16, no. 19, pp. 1–17, 2024, doi: 10.3390/su16198642.

A. Arce, A. Komkova, J. Van De Sande, C. G. Papanicolaou, and T. C. Triantafillou, “Optimal Design of Ferronickel Slag Alkali-Activated Material for High Thermal Load Applications Developed by Design of Experiment,” Materials (Basel)., vol. 15, no. 13, 2022, doi: 10.3390/ma15134379.

A. G. Kasikov, E. A. Shchelokova, O. A. Timoshchik, and A. Y. Sokolov, “Utilization of Converter Slag from Nickel Production by Hydrometallurgical Method,” Metals (Basel)., vol. 12, no. 11, 2022, doi: 10.3390/met12111934.

Y. Wang, R. Zhu, Q. Chen, G. Wei, S. Hu, and Y. Guo, “Recovery of Fe, Ni, Co, and Cu from nickel converter slag through oxidation and reduction,” ISIJ Int., vol. 58, no. 12, pp. 2191–2199, 2018, doi: 10.2355/isijinternational.ISIJINT-2018-533.

G. Zhang, N. Wang, M. Chen, and Y. Cheng, “Recycling nickel slag by aluminum dross: Iron-extraction and secondary slag stabilization,” ISIJ Int., vol. 60, no. 3, pp. 602–609, 2020, doi: 10.2355/isijinternational.ISIJINT-2019-173.

B. Lim, H. S. Kim, and J. Park, “Implicit interpretation of indonesian export bans on lme nickel prices: Evidence from the announcement effect,” Risks, vol. 9, no. 5, pp. 1–7, 2021, doi: 10.3390/risks9050093.

B. Lim and R. D. Alorro, “Technospheric Mining of Mine Wastes: A Review of Applications and Challenges,” Sustain. Chem., vol. 2, no. 4, pp. 686–706, 2021, doi: 10.3390/suschem2040038.

N. T. Arndt, L. Fontboté, J. W. Hedenquist, S. E. Kesler, J. F. H. Thompson, and D. G. Wood, “Future global mineral resources,” Geochemical Perspect., vol. 6, no. 1, pp. 1–184, 2017, doi: 10.7185/geochempersp.6.1.

T. Salmi, J. Wärnå, and P. Tolvanen, “Understanding of Solid-Fluid Kinetics and Mass Transfer: From Ideal to Non-ideal Models, From Perfect Spheres to Moon Landscape,” Front. Chem. Eng., vol. 2, no. August, pp. 1–9, 2020, doi: 10.3389/fceng.2020.00006.

K. Hooshyari et al., “High temperature membranes based on PBI/sulfonated polyimide and doped-perovskite nanoparticles for PEM fuel cells,” J. Memb. Sci., vol. 612, p. 118436, 2020, doi: 10.1016/j.memsci.2020.118436.

S. Nadolski, M. Samuels, B. Klein, and C. J. R. Hart, “Evaluation of bulk and particle sensor-based sorting systems for the New Afton block caving operation,” Miner. Eng., vol. 121, no. October 2017, pp. 169–179, 2018, doi: 10.1016/j.mineng.2018.02.004.

T. Li et al., “Construction of Highly Conductive Cross-Linked Polybenzimidazole-Based Networks for High-Temperature Proton Exchange Membrane Fuel Cells,” Materials (Basel)., vol. 16, no. 5, 2023, doi: 10.3390/ma16051932.

D. Wang et al., “Ethyl phosphoric acid grafted amino-modified polybenzimidazole with improved long-term stability for high-temperature proton exchange membrane applications,” Int. J. Hydrogen Energy, vol. 45, no. 4, pp. 3176–3185, 2020, doi: 10.1016/j.ijhydene.2019.11.219.

M. R. Berber and N. Nakashima, Bipyridine-based polybenzimidazole membranes with outstanding hydrogen fuel cell performance at high temperature and non-humidifying conditions, vol. 591. Elsevier B.V., 2019. doi: 10.1016/j.memsci.2019.117354.

N. V. Sarlis, E. S. Skordas, S. R. G. Christopoulos, and P. K. Varotsos, “Identifying the Occurrence Time of the Destructive Kahramanmaraş-Gazientep Earthquake of Magnitude M7.8 in Turkey on 6 February 2023 †,” Appl. Sci., vol. 14, no. 3, 2024, doi: 10.3390/app14031215.

X. Li et al., “Highly Conductive and Mechanically Stable Imidazole-Rich Cross-Linked Networks for High-Temperature Proton Exchange Membrane Fuel Cells,” Chem. Mater., vol. 32, no. 3, pp. 1182–1191, 2020, doi: 10.1021/acs.chemmater.9b04321.

M. Hu, T. Li, S. Neelakandan, L. Wang, and Y. Chen, “Cross-linked polybenzimidazoles containing hyperbranched cross-linkers and quaternary ammoniums as high-temperature proton exchange membranes: Enhanced stability and conductivity,” J. Memb. Sci., vol. 593, no. August 2019, p. 117435, 2020, doi: 10.1016/j.memsci.2019.117435.

F. Liu et al., “Cross-Linkable Polymeric Ionic Liquid Improve Phosphoric Acid Retention and Long-Term Conductivity Stability in Polybenzimidazole Based PEMs,” ACS Sustain. Chem. Eng., vol. 6, no. 12, pp. 16352–16362, 2018, doi: 10.1021/acssuschemeng.8b03419.

F. Abdul et al., “Application of iron-rich slag to capture carbon dioxide gas through direct gas-solid carbonation,” Glob. J. Environ. Sci. Manag., vol. 10, no. 4, pp. 1675–1686, 2024, doi: 10.22034/gjesm.2024.04.11.

Z. Tang, H. Peng, P. Mei, F. Huang, S. Yi, and F. Feng, “Performance Analysis of Ferronickel Slag-Ordinary Portland Cement Pervious Concrete,” Materials (Basel)., vol. 17, no. 7, 2024, doi: 10.3390/ma17071628.

E. Soldado, A. Antunes, H. Costa, R. Do Carmo, and E. Júlio, “Influence of pozzolan, slag and recycled aggregates on the mechanical and durability properties of low cement concrete,” Materials (Basel)., vol. 14, no. 15, 2021, doi: 10.3390/ma14154173.

D. Rezakhani, A. H. Jafari, and M. Hajabassi, “Durability, mechanical properties and rebar corrosion of slag-based cement concrete modified with graphene oxide,” Structures, vol. 49, no. January, pp. 678–697, 2023, doi: 10.1016/j.istruc.2023.01.149.

Ravindranatha, A. Shenoy, and Sidharth, “Exploring Flexural Strength in High-Performance Concrete with Iron Slag and Copper Slag as Sand Substitutes,” Eng. Proc., vol. 59, no. 1, 2023, doi: 10.3390/engproc2023059242.

S. M. Abdelbasir and M. A. A. Khalek, “From waste to waste: iron blast furnace slag for heavy metal ions removal from aqueous system,” Environ. Sci. Pollut. Res., vol. 29, no. 38, pp. 57964–57979, 2022, doi: 10.1007/s11356-022-19834-3.

L. Yang, X. Qian, Z. Wang, Y. Li, H. Bai, and H. Li, “Steel slag as low-cost adsorbent for the removal of phenanthrene and naphthalene,” Adsorpt. Sci. Technol., vol. 36, no. 3–4, pp. 1160–1177, 2018, doi: 10.1177/0263617418756407.

J. Yang et al., “Research Progress and Hotspots of Steel Slag Application in Road Construction: A Bibliometric Perspective,” Infrastructures, vol. 10, no. 3, pp. 1–30, 2025, doi: 10.3390/infrastructures10030054.

Z. Zhang, L. Liu, B. Shen, and C. Wu, “Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification,” Renew. Sustain. Energy Rev., vol. 94, pp. 1086–1109, 2018, doi: 10.1016/j.rser.2018.07.010.

H. O. Seo, “Recent scientific progress on developing supported Ni catalysts for dry (CO2) reforming of methane,” Catalysts, vol. 8, no. 3, pp. 16–22, 2018, doi: 10.3390/catal8030110.

H. Radfarnia et al., “ Experimental Study on Indirect CO 2 Mineralization of Industrial Solid Wastes: Electric Arc Furnace (EAF) Slag and Nickel Mine Tailings ,” ACS Omega, vol. 10, no. 36, pp. 41571–41585, 2025, doi: 10.1021/acsomega.5c05128.

P. P. Plehiers et al., “Artificial Intelligence for Computer-Aided Synthesis In Flow: Analysis and Selection of Reaction Components,” Front. Chem. Eng., vol. 2, no. August, 2020, doi: 10.3389/fceng.2020.00005.

L. Guo, X. Peng, Q. Wang, Y. Zhao, L. Xu, and S. Wu, “Research progress on carbon dioxide mineralization sequestration technology by tailings,” Green Smart Min. Eng., vol. 1, no. 3, pp. 307–321, 2024, doi: 10.1016/j.gsme.2024.08.005.

W. J. J. Huijgen, G. J. Witkamp, and R. N. J. Comans, “Mineral CO2 sequestration by steel slag carbonation,” Environ. Sci. Technol., vol. 39, no. 24, pp. 9676–9682, 2005, doi: 10.1021/es050795f.

Published

2026-01-09

How to Cite

Amanda Setiawan, & Dan Mugisidi. (2026). Pengaruh Partisi Antar Layer Butiran Terhadap Gas CO₂ Pada Batuan Slag Nikel. Prosiding Seminar Nasional Teknoka, 10(1), E79-E87. Retrieved from https://journal.uhamka.ac.id/index.php/teknoka/article/view/22497