Tinjauan Pustaka: Kinerja Kondensor terhadap Produksi Air Tawar pada Proses Desalinasi Air Laut
Keywords:
desalination, condenser, air conditioner waste heat, thermal efficiency, heat exchanger designAbstract
The utilization of waste heat from air conditioning (AC) systems has the potential to serve as an alternative energy source for seawater desalination processes. However, the thermal efficiency of desalination systems is strongly influenced by the condensation stage, particularly by the shape and design of the condenser used. This review aims to examine and compare various condenser configurations such as shell and tube, coiled tube, plate, and finned condensers in the context of improving condensation efficiency and freshwater production. The study is conducted through a literature analysis that reviews key parameters such as heat transfer rate, coolant flow rate, and temperature differences between fluids. The review results show that shell and tube condensers provide the highest heat transfer effectiveness, while plate condensers offer better energy efficiency and ease of maintenance. In conclusion, selecting the appropriate condenser design can significantly enhance the efficiency of seawater desalination systems utilizing AC waste heat.
Downloads
References
R. K. Das and A. Date, “Sustainable water desalination using eductor and waste heat: A review and suggestion for future research,” Desalination, vol. 603, no. October 2024, p. 118687, 2025, doi: 10.1016/j.desal.2025.118687.
F. Muhammad, J. W. Hidayat, Solikhin, A. Rusdiyanto, and H. R. Devara, “Pemanfaatan Air Laut Menjadi Air Tawar Menggunakan Prinsip Desalinasi (Studi Kasus : Desa Punjulharjo, Kabupaten Rembang),” Abdi Insa., vol. 8, no. 1, pp. 25–31, 2021, doi: 10.29303/abdiinsani.v8i1.367.
M. Rady, F. Albatati, A. Hegab, A. Abuhabaya, and A. Attar, “Design and analysis of waste heat recovery from residential air conditioning units for cooling and pure water production,” Int. J. Low-Carbon Technol., vol. 16, no. 3, pp. 1018–1032, 2021, doi: 10.1093/ijlct/ctab033.
Aziz, “Potensi Pemanfaatan Energi Panas Terbuang Pada Kondensor,” J. Mek., vol. 6, no. 2, pp. 569–576, 2015.
M. Sami, “Experimental study of a coupled unit for space cooling and water desalination,” 2023.
H. Hendradinata, F. Irawan, and ..., “Rancang Bangun Water Heater Dengan Memanfaatkan Panas Air Conditioning,” PETRA J. Teknol. …, vol. 5, no. 2, p. 44, 2018, [Online]. Available: https://jurnal.polsky.ac.id/index.php/petra/article/download/172/166
C. Pan et al., “Optimization of Evaporation and Condensation Architectures for Solar-Driven Interfacial Evaporation Desalination,” Membranes (Basel)., vol. 12, no. 9, 2022, doi: 10.3390/membranes12090899.
P. Poredoš et al., “Ultra-high freshwater production in multistage solar membrane distillation via waste heat injection to condenser,” Nat. Commun. , vol. 15, no. 1, 2024, doi: 10.1038/s41467-024-51880-y.
V. Turek, B. Kilkovský, J. Daxner, D. Babička Fialová, and Z. Jegla, “Industrial Waste Heat Utilization in the European Union—An Engineering-Centric Review,” Energies, vol. 17, no. 9, 2024, doi: 10.3390/en17092084.
D. Charitar and A. Madhlopa, “Integration of waste heat in thermal desalination technologies: A review,” J. Energy South. Africa, vol. 33, no. 1, pp. 68–84, 2022, doi: 10.17159/2413-3051/2022/v33i1a5434.
S. M. Ammar, Z. Ramadan, and C. W. Park, “Performance evaluation of novel plate-type condenser for an absorption/adsorption refrigeration system: Experimental and CFD study,” Case Stud. Therm. Eng., vol. 56, no. November 2023, p. 104260, 2024, doi: 10.1016/j.csite.2024.104260.
B. L. Salvi, T. Soni, S. Jindal, and N. L. Panwar, “Design improvement and experimental study on shell and tube condenser for bio-oil recovery from fast pyrolysis of wheat straw biomass,” SN Appl. Sci., vol. 3, no. 2, pp. 1–8, 2021, doi: 10.1007/s42452-021-04165-8.
N. Apriandi MS, Y. D. Herlambang, A. S. Alfauzi, and S.-C. Lee, “Shell and Tube Heat Exchanger Design: Utilization of Wasted Energy in Air Conditioning Systems,” Eksergi, vol. 19, no. 2, p. 39, 2023, doi: 10.32497/eksergi.v19i2.4461.
X. Cao, T. Du, Z. Liu, H. Zhai, and Z. Duan, “Experimental and numerical investigation on heat transfer and fluid flow performance of sextant helical baffle heat exchangers,” Int. J. Heat Mass Transf., vol. 142, p. 118437, 2019, doi: 10.1016/j.ijheatmasstransfer.2019.118437.
Reza Dyota Ahmad, Donny Ivananda, Ramadhani Santoso, and Dyah Ratna Wulan, “Analisis Nilai Transfer Panas Dalam Heat Exchanger Type 1-1 Shell and Tube Aliran Counter Current Menggunakan Computational Fluid Dynamics,” DISTILAT J. Teknol. Separasi, vol. 9, no. 2, pp. 130–136, 2023, doi: 10.33795/distilat.v9i2.2688.
Z. Rifaldo, Burhan Hafid, Zakir Husin, Etanto Heiliano Wijayanto, and M. Idris, “Analysis of Heat Transfer in Shell and Tube Type Condensers,” J. Mech. Eng. Manuf. Mater. Energy, vol. 8, no. 1, pp. 67–74, 2024, doi: 10.31289/jmemme.v8i1.6238.
D. Agustina Sari, “SINERGI Polmed : JURNAL ILMIAH TEKNIK MESIN STUDI PERGANTIAN MATERIAL TUBE DARI CARBON STEEL MENJADI 309 STAINLESS STEEL PADA PENUKAR PANAS KONDENSER SHELL AND TUBE I N F O A R T I K E L,” vol. 05, no. 02, pp. 12–18, 2024, [Online]. Available: http://ojs.polmed.ac.id/index.php/Sinergi/index
A. Behrozifard, H. R. Goshayeshi, I. Zahmatkesh, I. Chaer, S. Salahshour, and D. Toghraie, “Experimental optimization of the performance of a plate heat exchanger with Graphene oxide/water and Al₂O₃/water nanofluids,” Case Stud. Therm. Eng., vol. 59, no. April, p. 104525, 2024, doi: 10.1016/j.csite.2024.104525.
M. Luberti and M. Capocelli, “Enhanced Humidification–Dehumidification (HDH) Systems for Sustainable Water Desalination,” Energies, vol. 16, no. 17, 2023, doi: 10.3390/en16176352.
C. S. E. Tupamahu and S. J. E. Sarwuna, “Pengaruh Laju Aliran Fluida Helical Coil Terhadap Efektivitas Kondensor Minyak Atsiri Cengkeh Berbasis Shell,” J. Asiimetrik J. Ilm. Rekayasa Inov., vol. 3, pp. 215–220, 2021, doi: 10.35814/asiimetrik.v3i2.2298.
S. Missaoui, Z. Driss, R. Ben Slama, and B. Chaouachi, “Effects of pipe turns on vertical helically coiled tube heat exchangers for water heating in a household refrigerator,” Int. J. Air-Conditioning Refrig., vol. 30, no. 1, 2022, doi: 10.1007/s44189-022-00005-5.
W. Z. Fengzhi Li, Jie Chen, Yiqiang Jiang, “Characteristics Inside Spiral Tubes,” 2023.
L. Dong, C. Dong, and X. Wu, “Numerical simulation of heat transfer performance of spiral wound heat exchanger under sloshing condition,” PLoS One, vol. 18, no. 12 December, pp. 1–25, 2023, doi: 10.1371/journal.pone.0295315.
A. H. Elsheikh, H. N. Panchal, S. Sengottain, N. A. Alsaleh, and M. Ahmadein, “Applications of Heat Exchanger in Solar Desalination: Current Issues and Future Challenges,” Water (Switzerland), vol. 14, no. 6, pp. 1–13, 2022, doi: 10.3390/w14060852.
A. Y. Adam, A. N. Oumer, G. Najafi, M. Ishak, M. Firdaus, and T. B. Aklilu, “State of the art on flow and heat transfer performance of compact fin-and-tube heat exchangers,” J. Therm. Anal. Calorim., vol. 139, no. 4, pp. 2739–2768, 2020, doi: 10.1007/s10973-019-08971-6.
D. U. Lawal et al., “Experimental Investigation of a Plate–Frame Water Gap Membrane Distillation System for Seawater Desalination,” Membranes (Basel)., vol. 13, no. 9, pp. 1–18, 2023, doi: 10.3390/membranes13090804.
G. Cui, M. Bi, and C. Liu, “Design and experimental validation of a six-effect multi-effect evaporation plant utilized in oilfield,” Desalin. Water Treat., vol. 217, pp. 111–126, 2021, doi: 10.5004/dwt.2021.26891.
S. Mohebbi and F. Veysi, “An experimental investigation on the heat transfer and friction coefficients of a small plate heat exchanger with chevron angle,” Heat Mass Transf. und Stoffuebertragung, vol. 56, no. 3, pp. 849–858, 2020, doi: 10.1007/s00231-019-02749-0.
J. S. Pal, S. N. Sapali, and P. W. Deshmukh, “Estimation and analysis of exergy loss and performance evaluation of marine freshwater generating system,” J. Therm. Eng., vol. 10, no. 5, pp. 1266–1274, 2024, doi: 10.14744/thermal.0000857.
T. M. Thomas and P. S. Mahapatra, “A plate-type condenser platform with engineered wettability for space applications,” 2023, [Online]. Available: http://arxiv.org/abs/2305.19070
J. Zhang, X. Zhu, M. E. Mondejar, and F. Haglind, “A review of heat transfer enhancement techniques in plate heat exchangers,” Renew. Sustain. Energy Rev., vol. 101, no. December 2017, pp. 305–328, 2019, doi: 10.1016/j.rser.2018.11.017.
A. A. Azmi et al., “Basic design optimization of power and desalinated water for hybrid cycle ocean thermal energy conversion system integrated with desalination plant,” J. Mar. Sci. Technol., vol. 29, no. 2, pp. 333–352, 2024, doi: 10.1007/s00773-024-00988-3.
M. K. R. Pulagam, S. K. Rout, K. K. Muduli, S. A. Syed, D. Barik, and A. K. Hussein, “Internal Finned Heat Exchangers: Thermal and Hydraulic Performance Review,” Int. J. Heat Technol., vol. 42, no. 2, pp. 583–592, 2024, doi: 10.18280/ijht.420225.
N. Jing, Y. Xia, Q. Ding, Y. Chen, Z. Wang, and X. Zhang, “Simulation and Optimization Study on the Performance of Fin-and-Tube Heat Exchanger,” Sustain., vol. 15, no. 15, 2023, doi: 10.3390/su151511587.
D. S. Wijayanto, Soenarto, M. B. Triyono, W. Prasetyo, and I. Widiastuti, “Analysis of Longitudinal Finned Pipes in Cross-Flow Heat Exchanger,” Int. J. Heat Technol., vol. 39, no. 6, pp. 1909–1916, 2021, doi: 10.18280/ijht.390627.
Y. Rong, W. Su, S. Wang, B. Du, J. Wei, and S. Zhang, “Optimization of Finned-Tube Heat Exchanger in a Gravity-Assisted Separated Heat Pipe,” Front. Heat Mass Transf., vol. 22, no. 4, pp. 1209–1229, 2024, doi: 10.32604/fhmt.2024.052415.
A. Elshabrawy, S. A. E. S. Ahmed, M. A. Abdelatief, E. Ibrahim, and M. Adel, “Thermal Analysis of a Two-Phase Closed Thermosyphon With Internal Semi-Cylindrical Finned Condenser: an Experimental Study,” JP J. Heat Mass Transf., vol. 34, pp. 35–52, 2023, doi: 10.17654/0973576323031.
S. KUMAR and P. CHANDRA, “Experimental investigation of axial finned tube evaporator thermal distillation system using for diesel engine waste heat recovery process,” J. Therm. Eng., vol. 10, no. 2, pp. 479–489, 2024, doi: 10.18186/thermal.1456708.
W. Zhang, X. Du, L. Yang, and Y. Yang, “Research on Performance of Finned Tube Bundles of Indirect Air-cooled Heat Exchangers,” Math. Model. Eng. Probl., vol. 3, no. 1, pp. 47–51, 2016, doi: 10.18280/mmep.030108.
L. Morozyuk, V. Sokolovska-Yefymenko, A. Moshkatiuk, V. Ierin, and A. Basov, “Experimental study and analysis of an air-cooled condenser with the fouling on the heat exchange surface for small-scale commercial refrigeration systems,” Int. J. Air-Conditioning Refrig., vol. 31, no. 1, 2023, doi: 10.1007/s44189-023-00034-8.
P. Pongsoi, S. Pikulkajorn, and S. Wongwises, “Heat transfer and flow characteristics of spiral fin-and-tube heat exchangers: A review,” Int. J. Heat Mass Transf., vol. 79, pp. 417–431, 2014, doi: 10.1016/j.ijheatmasstransfer.2014.07.072.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Prosiding Seminar Nasional Teknoka

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Supported by :


