Pemanfaatan Panas Buang Pendingin Udara untuk Proses Penguapan Air pada Sistem Desalinasi Berbasis Vortex Generator

Authors

  • Genta Prastanadira Universitas Muhammadiyah Prof. Dr. Hamka
  • Dan Mugisidi Universitas Muhammadiyah Prof. Dr. Hamka

Keywords:

desalination, air conditioning waste heat, vortex generator, water evaporation, energy efficiency

Abstract

The clean water crisis caused by climate change and population growth has driven the development of efficient and sustainable desalination technologies. One alternative is to utilize waste heat from air conditioning systems as a thermal energy source for water evaporation processes. Hot air from air conditioning system condensers can be reused in the desalination process, especially when combined with vortex generators to increase heat transfer through turbulent flow. This study aims to review various studies on the effect of vortex generators on increasing the evaporation process in air conditioning waste heat-based desalination systems. The method used is a literature study of scientific publications discussing flow characteristics, temperature distribution, thermal efficiency, and water evaporation rate. The results of the review show that the application of vortex generators can increase the evaporation rate compared to conventional systems. This study provides the basis for the development of energy-efficient desalination systems with broad potential for clean water supply.

Downloads

Download data is not yet available.

References

S. A. Marzouk, F. A. Almehmadi, A. Aljabr, and M. A. Sharaf, “Numerical and experimental investigation of heat transfer enhancement in double tube heat exchanger using nail rod inserts,” Sci. Rep., vol. 14, no. 1, pp. 1–16, 2024, doi: 10.1038/s41598-024-59085-5.

K. S. Rambhad, V. P. Kalbande, M. A. Kumbhalkar, V. W. Khond, and R. A. Jibhakate, “Heat Transfer and Fluid Flow Analysis for Turbulent Flow in Circular Pipe with Vortex Generator,” SN Appl. Sci., vol. 3, no. 7, 2021, doi: 10.1007/s42452-021-04664-8.

H. Zhao et al., “Thermo-Hydraulic Performances of Microchannel Heat Sinks with Different Types of Perforated Rectangular Blocks,” Fluid Dyn. Mater. Process., vol. 21, no. 1, pp. 87–105, 2025, doi: 10.32604/fdmp.2024.056577.

J. Orfi and E. Ali, “A Feasibility Study of Vortex Tube-Powered Membrane Distillation (MD) for Desalination,” Water (Switzerland), vol. 15, no. 21, 2023, doi: 10.3390/w15213767.

M. A. Alamir, “An artificial neural network model for predicting the performance of thermoacoustic refrigerators,” Int. J. Heat Mass Transf., vol. 164, p. 120551, 2021, doi: 10.1016/j.ijheatmasstransfer.2020.120551.

M. Oneissi, C. Habchi, S. Russeil, D. Bougeard, and T. Lemenand, “Novel design of delta winglet pair vortex generator for heat transfer enhancement,” Int. J. Therm. Sci., vol. 109, pp. 1–9, 2016, doi: 10.1016/j.ijthermalsci.2016.05.025.

A. A. Kapse and V. C. Shewale, “Experimental Study of Heat Transfer Augmentation Characteristics of a Tube Affected by Geometric Parameters of Coiled Spring Inserts,” J. Heat Mass Transf. Res., vol. 11, no. 1, pp. 127–138, 2024, doi: 10.22075/JHMTR.2024.30106.1426.

J. Wang, T. Fu, L. Zeng, G. Chen, and F. S. Lien, “Numerical and experimental investigations of micro thermal performance in a tube with delta winglet pairs,” Micromachines, vol. 12, no. 7, pp. 1–14, 2021, doi: 10.3390/mi12070786.

L. M. Vane, K. Rock, and D. Jordan, “Energy efficient vortex-enhanced water evaporation technology for concentrated brine management: Theory and process simulation evaluation,” Desalination, vol. 522, pp. 1–34, 2022, doi: 10.1016/j.desal.2021.115427.

A. S. Bisht, V. S. Bisht, P. Bhandari, K. S. Rawat, T. Alam, and P. Blecich, “The Use of a Vortex Generator for the Efficient Cooling of Lithium-Ion Batteries in Hybrid Electric Vehicles,” Processes, vol. 11, no. 2, pp. 1–13, 2023, doi: 10.3390/pr11020500.

S. Ali, T. Dbouk, G. Wang, D. Wang, and D. Drikakis, “Advancing thermal performance through vortex generators morphing,” Sci. Rep., vol. 13, no. 1, pp. 1–14, 2023, doi: 10.1038/s41598-022-25516-4.

A. Gönül and A. B. Okbaz, “Enhanced performance of a microchannel with rectangular vortex generators,” J. Therm. Eng., vol. 9, no. 2, pp. 260–278, 2023, doi: 10.18186/thermal.1272395.

Y. Wang, J. J. Foo, M. V. Tran, S. R. Nair, and C. S. Oon, “Numerical investigation of thermo-hydraulic performance of perforated rectangular and sinusoidal vortex generators in a double-pipe heat exchanger,” J. Therm. Anal. Calorim., vol. 149, no. 19, pp. 11137–11154, 2024, doi: 10.1007/s10973-023-12838-2.

J. M. Hadi and Y. H. Abed, “A Review on the Use of Vortex Generators in Solar Air Heaters: Experimental Insights and Theoretical Models for Performance Improvement,” Al Rafidain J. Eng. Sci., vol. 3, no. 1, pp. 210–227, 2025, doi: 10.61268/1edw4d57.

Syaiful, T. Wahyuni, B. Yunianto, and N. Sinaga, “Evaluation of vortex generators in the heat transfer improvement of airflow through an in-line heated tube arrangement,” Fluids, vol. 6, no. 10, 2021, doi: 10.3390/fluids6100344.

S. J. Nghaimesh and M. A. Jabbar, “Heat Transfer Enhancement Simulation Employing Flat and Curved Winglet Vortex Generator Pairs with Punched Holes,” Int. J. Heat Technol., vol. 42, no. 5, pp. 1643–1650, 2024, doi: 10.18280/ijht.420518.

Y. Lei, Y. Li, S. Jing, C. Song, Y. Lyu, and F. Wang, “Design and performance analysis of the novel shell-and-tube heat exchangers with louver baffles,” Appl. Therm. Eng., vol. 125, pp. 870–879, 2017, doi: 10.1016/j.applthermaleng.2017.07.081.

K. W. Song, Z. P. Xi, M. Su, L. C. Wang, X. Wu, and L. B. Wang, “Effect of geometric size of curved delta winglet vortex generators and tube pitch on heat transfer characteristics of fin-tube heat exchanger,” Exp. Therm. Fluid Sci., vol. 82, pp. 8–18, 2017, doi: 10.1016/j.expthermflusci.2016.11.002.

G. Lu and G. Zhou, “Numerical simulation on performances of plane and curved winglet type vortex generator pairs with punched holes,” Int. J. Heat Mass Transf., vol. 102, pp. 679–690, 2016, doi: 10.1016/j.ijheatmasstransfer.2016.06.063.

Z. Ke, C. L. Chen, K. Li, S. Wang, and C. H. Chen, “Vortex dynamics and heat transfer of longitudinal vortex generators in a rectangular channel,” Int. J. Heat Mass Transf., vol. 132, pp. 871–885, 2019, doi: 10.1016/j.ijheatmasstransfer.2018.12.064.

A. P. H. J. Gajanan Kalyankar, “Heat Transfer Enhancement Through Swirl Flow Devices,” Int. J. Innov. Eng. Res. Technol., vol. 2018, pp. 198–200, 2018.

M. Fahri Fadlu Robbi and B. Yunianto, “Studi Numerik Pengaruh Aspek Rasio Dari Perforated Concave Delta Winglet Terhadap Performa Termal-Hidrolik Aliran Udara Melewati Tube Di Dalam Saluran,” J. Tek. Mesin S-1, vol. 11, no. 3, p. 201, 2023.

N. Aditya Kusuma and B. Yunianto, “Pengaruh Perbedaan Jumlah Convex-Strips Vortex Generator Dalam Laju Perpindahan Panas,” J. Tek. Mesin S-1, vol. 12, no. 2, pp. 113–116, 2024.

R. Maulana et al., “Panas Menggunakan Delta Winglet Vortex Generator Dengan,” vol. 12, no. 2, pp. 1–6, 2024.

M. Fiebig, A. Grosse-Gorgemann, Y. Chen, and N. K. Mitra, “Conjugate heat transfer of a finned tube part a: Heat transfer behavior and occurrence of heat transfer reversal,” Numer. Heat Transf. Part A Appl., vol. 28, no. 2, pp. 133–146, 1995, doi: 10.1080/10407789508913737.

J. C. Shyu and J. S. Jheng, “Heat transfer enhancement of plate-fin heat sinks with different types of winglet vortex generators,” Energies, vol. 13, no. 19, 2020, doi: 10.3390/en13195219.

P. B. Dehankar, K. Joshi, V. A. Bhosale, and R. N. Mulik, “Assessment of twist tape thermal performance in heat transfer passive augmentation technique,” Beni-Suef Univ. J. Basic Appl. Sci., vol. 11, no. 1, 2022, doi: 10.1186/s43088-022-00208-0.

P. Saini, A. Dhar, and S. Powar, “Performance enhancement of fin and tube heat exchanger employing curved delta winglet vortex generator with circular punched holes,” Int. J. Thermofluids, vol. 20, no. August, p. 100452, 2023, doi: 10.1016/j.ijft.2023.100452.

F. H. Exchanger, A. Trp, and K. Lenic, “Heat Transfer Enhancement of Crossflow Air-to-Water,” 2022.

Y. Effendi, A. Rosyidin, and B. Setiawan, “Peningkatan Performa Termal Dengan Menggunakan Vortex Generators Didalam Saluran Persegi Panjang Vortex generators ( VGs ) are an effective method for improving the thermal performance of heat exchangers . This study aims to optimize the heat transfer rat,” vol. 13, no. 1, pp. 117–126, 2024.

Y. Effendi and A. Rosyidin, “Efek vortex generators terhadap peningkatan perpindahan panas pada aliran melewati heated tubes,” Turbo J. Progr. Stud. Tek. Mesin, vol. 9, no. 2, pp. 221–227, 2020, doi: 10.24127/trb.v9i2.1303.

A. M. Jacobi and R. K. Shah, “Heat transfer surface enhancement through the use of longitudinal vortices: A review of recent progress,” Exp. Therm. Fluid Sci., vol. 11, no. 3, pp. 295–309, 1995, doi: 10.1016/0894-1777(95)00066-U.

M. Dalmış, A. E. Gürel, G. Yıldız, A. Ergün, and Ü. Ağbulut, “Effect of the use of metal–oxide and boron-based nanoparticles on the performance in a photovoltaic thermal module (PV/T): Experimental study,” Int. J. Thermofluids, vol. 24, no. October, 2024, doi: 10.1016/j.ijft.2024.100910.

A. R. Ramadhan, G. Marausna, and F. Jayadi, “Analisa Performa Heat Exchanger Dengan Penambahan Vortex Generator Tipe Delta Wing Dan Delta Winglet Tape Insert Guna Mengatasi Icing Pada Karburator Piston Engine,” Tek. STTKD J. Tek. Elektron. Engine, vol. 9, no. 1, pp. 45–54, 2023, doi: 10.56521/teknika.v9i1.885.

B. A. Ahmad et al., “Efek Vortex Generator Berlubang Dengan Variasi Aspek Rasio,” J. Tek. Mesin, vol. 9, no. 1, pp. 9–14, 2021.

G. Biswas, P. Deb, and S. Biswas, “Generation of longitudinal streamwise vortices—a device for improving heat exchanger design,” J. Heat Transfer, vol. 116, no. 3, pp. 588–597, 1994, doi: 10.1115/1.2910910.

S. T. W. A. Hadi Suryo, “Pengaruh Aspect Ratio Dari Delta Winglet Vortex Generator Terhadap Perpindahan Panas Dari Tubes Ke Aliran Udara Di Dalam Saluran,” J. Tek. Mesin S-1, vol. 9, no. 1, pp. 47–62, 2021.

S. Tiggelbeck, N. K. Mitra, and M. Fiebig, “Comparison of wing-type vortex generators for heat transfer enhancement in channel flows,” J. Heat Transfer, vol. 116, no. 4, pp. 880–885, 1994, doi: 10.1115/1.2911462.

P. Saini, A. Dhar, and S. Powar, “Performance enhancement of fin and tube heat exchanger employing curved trapezoidal winglet vortex generator with circular punched holes,” Int. J. Heat Mass Transf., vol. 209, p. 124142, 2023, doi: 10.1016/j.ijheatmasstransfer.2023.124142.

John W. Creswell, Research Design, Qualitative, Quantitative, and Mixed Methods Approaches. 2020.

Y. C. Chung and C. I. Wu, "Enhancing Ocean Thermal Energy Conversion Performance: Optimized Thermoelectric Generator-Integrated Heat Exchangers with Longitudinal Vortex Generators," Energies, vol. 17, no. 2, 526, 2024. DOI: 10.3390/en17020526.

D. Chen, J. Ding, Y. Wu, W. Li, and Y. Wang, "Heat Transfer Enhancement of Plate-Fin Heat Sinks with Different Types of Winglet Vortex Generators," Energies, vol. 13, no. 19, 5219, 2020. DOI: 10.3390/en13195219.

J. Batista, A. Trp, and K. Lenic, "Heat Transfer Enhancement of Crossflow Air-to-Water Fin-and-Tube Heat Exchanger by Using Delta-Winglet Type Vortex Generators," Energies, vol. 15, no. 6, 2070, 2022. DOI: 10.3390/en15062070.

Syaiful, T. Winoto, B. Yunianto, and N. Sinaga, "Evaluation of Vortex Generators in the Heat Transfer Improvement of Airflow through an In-Line Heated Tube Arrangement," Inventions, vol. 6, no. 4, 344, 2021. DOI: 10.3390/inventions6040344.

S. Syaiful, M. P. Hendraswari, S. U. Utomo, M. S. K. Tony, and M. F. Soetanto, "Heat transfer enhancement in heat exchanger using convex delta winglet vortex generators," European Journal of Engineering and Technology Research, vol. 7, no. 6, pp. 72-77, 2022. DOI: 10.24018/ejeng.2022.7.6.2920

R. Jain, R. Pitchumani, and D. Lakshmi, "The Use of a Vortex Generator for the Efficient Cooling of Lithium-Ion Batteries in Hybrid Electric Vehicles," Processes, vol. 11, no. 2, 500, 2023. DOI: 10.3390/pr11020500.

G. Biswas, P. Deb, and S. Biswas, "Generation of longitudinal streamwise vortices—A device for improving heat exchanger design," Journal of Heat Transfer, vol. 116, no. 3, pp. 588-597, 1994. DOI: 10.1115/1.2910910

P. P. Jayaramu, A. Ghali, D. Xu, and S. Anandan, "Machine Learning Analysis of Thermal Performance Indicator of Heat Exchangers with Delta Wing Vortex Generators," Energies, vol. 17, no. 6, 1380, 2024. DOI: 10.3390/en17061380.

L. Lu, J. Pei, Z. Tian, H. Sun, and J. Li, "Effect of the arrangement of longitudinal vortex generators on the performance of a parabolic trough solar collector," Journal of Mechanical Science and Technology, vol. 38, pp. 2063-2077, 2024. DOI: 10.1007/s12206-024-0239-1

K. Song, Z. Xi, M. Su, L. Wang, X. Wu, and L. Wang, "Effect of geometric size of curved delta winglet vortex generators and tube pitch on heat transfer characteristics of fin-tube heat exchanger," Experimental Thermal and Fluid Science, vol. 82, pp. 8-18, 2017. DOI: 10.1016/j.expthermflusci.2016.11.002

L. Wang, P. Ni, and G. Xi, “The effect of off-center placement of twisted tape on flow and heat transfer characteristics in a circular tube,” Scientific Reports, vol. 11, no. 1, p. 6844, 2021. DOI: 10.1038/s41598-021-86285-0

M. Fiebig and N. K. Mitra, “Wing-type vortex generators for fin-and-tube heat exchangers,” Experimental Thermal and Fluid Science, vol. 7, no. 4, pp. 287–295, 1993. DOI: 10.1016/0894-1777(93)90035-N

J. Batista, A. Trp, and K. Lenic, “Heat transfer enhancement of crossflow air-to-water fin-and-tube heat exchanger by using delta-winglet type vortex generators,” Energies, vol. 15, no. 6, p. 2070, 2022. DOI: 10.3390/en15062070

Published

2026-01-09

How to Cite

Genta Prastanadira, & Dan Mugisidi. (2026). Pemanfaatan Panas Buang Pendingin Udara untuk Proses Penguapan Air pada Sistem Desalinasi Berbasis Vortex Generator. Prosiding Seminar Nasional Teknoka, 10(1), E121-E131. Retrieved from https://journal.uhamka.ac.id/index.php/teknoka/article/view/22502