Optimization of Da An Gene Kit for SARS-CoV-2 Detection in Real-Time RT-PCR

Seprianto Seprianto, Muhammad Arreza, Titta Novianti, Febriana Dwi Wahyuni, Oktaviani Naulita Turnip, Roaslein Putri, Henny Saraswati

Abstract

Background: SARS-CoV-2 is a new type of coronavirus of the genus Betacoronavirus and the family Coronaviridae that causes a respiratory disease called COVID-19. The virus has a sheath and genetic material in the form of single-chain RNA. The genome structure of this virus is divided into two types, namely genes that encode non-structural proteins consisting of the ORF1a / ORF1b gene and genes that encode structural proteins consisting of spike glycoprotein (S), envelope (E), membrane glycoprotein (M), and nucleocapsid protein (N). Methods: The method of detecting SARS-CoV-2 with real time RT-PCR is the most recommended method because it has high specificity and accuracy. The specificity of a method is necessary to be able to specifically recognize the pathogen that causes the disease. Real time RT-PCR requires sampling with a swab on the oropharynx or nasopharynx to be examined in the laboratory which later the presence of viral RNA becomes a molecule that is assessed for diagnosis results. In this study, volume optimization was carried out on the Da An Gene kit used for the detection of SARS-CoV-2 with Reverse Transcription Polymerase Chain Reaction (Real time RT-PCR) with the aim of saving the use of reagents from available kits but with amplification results remaining optimal and accurate. Results: There were three SARS-CoV-2 RNA samples used consisting of N62, N63, and N79 samples and three types of total volume used were 20 μl, 15 μl, and 10 μl. The results of this study showed that the three positive samples contained SARS-CoV-2 with a Cq value of < 40. Conclusion: A volume of 20 μl is the optimal volume, which is more efficient than the manufacturer's recommended volume of 25 ul.

Full text article

Generated from XML file

References

Butler, J. M. (2012). DNA Quantitation. Advanced Topics in Forensic DNA Typing, 49–67. https://doi.org/10.1016/B978-0-12-374513-2.00003-8
Co, Gene., D. A. (2019). Instruction for Use of Detection Kit for 2019 Novel Coronavirus (2019-nCoV) RNA. In EUL 0493-141-00. Sun Yat-sen University.
Coperchini, F., Chiovato, L., Croce, L., Magri, F., & Rotondi, M. (2020). The Cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine & Growth Factor Reviews, May, 1–8. https://doi.org/10.1016/j.cytogfr.2020.05.003
Cui, J., Li, F., & Shi, Z. L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17(3), 181–192. https://doi.org/10.1038/s41579-018-0118-9
Faí­co-Filho, K. S., Passarelli, V. C., & Bellei, N. (2020). Is higher viral load in SARS-CoV-2 associated with death? American Journal of Tropical Medicine and Hygiene, 103(5), 2019–2021. https://doi.org/10.4269/ajtmh.20-0954
Hu, B., Guo, H., Zhou, P., & Shi, Z. L. (2020). Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, December. https://doi.org/10.1038/s41579-020-00459-7
Hu, B., Guo, H., Zhou, P., & Shi, Z. L. (2021). Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 19(3), 141–154. https://doi.org/10.1038/s41579-020-00459-7
ICTV. (2020). the Species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology. https://doi.org/10.1016/b978-1-4832-0029-3.50107-7
Jalali, M., Zaborowska, J., & Jalali, M. (2017). The Polymerase Chain Reaction: PCR, qPCR, and RT-PCR. In Basic Science Methods for Clinical Researchers. Elsevier Inc. https://doi.org/10.1016/B978-0-12-803077-6.00001-1
Kampf, G., Lemmen, S., & Suchomel, M. (2021). Ct values and infectivity of SARS-CoV-2 on surfaces. The Lancet Infectious Diseases, 21(6), e141. https://doi.org/10.1016/S1473-3099(20)30883-5
Kumar, S., Nyodu, R., Maurya, V. K., & Saxena, S. K. (2020a). Morphology, Genome Organization, Replication, and Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). In S. K. Saxena (Ed.), Medical Virology: From Pathogenesis to Diseases Control (Vol. 2, pp. 23–31). Springer. https://doi.org/10.1007/978-981-15-4814-7_3
Kumar, S., Nyodu, R., Maurya, V. K., & Saxena, S. K. (2020b). Morphology, Genome Organization, Replication, and Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). In Springer. https://doi.org/10.1093/cid/ciaa455
Life Technologies. (2012). Real-time PCR handbook. Realtime PCR Handbook, 1–68.
Lu, Y., Li, L., Ren, S., Liu, X., Zhang, L., Li, W., & Yu, H. (2020). Comparison of the diagnostic efficacy between two PCR test kits for SARS-CoV-2 nucleic acid detection. Journal of Clinical Laboratory Analysis, 34(10), 1–5. https://doi.org/10.1002/jcla.23554
Mohammed, K. S., de Laurent, Z. R., Omuoyo, D. O., Lewa, C., Gicheru, E., Cheruiyot, R., Bartilol, B., Mutua, S., Musyoki, J., Gumba, H., Mwacharo, J., Riako, D., Mwangi, S. J., Gichuki, B. M., Nyamako, L., Karani, A., Karanja, H., Mugo, D., Gitonga, J. N., ... Ochola-Oyier, L. I. (2022). An optimization of four SARS-CoV-2 qRT-PCR assays in a Kenyan laboratory to support the national COVID-19 rapid response teams. Wellcome Open Research, 5, 162. https://doi.org/10.12688/wellcomeopenres.16063.2
Navarro, E., Serrano-Heras, G., Castaño, M. J., & Solera, J. (2015). Real-time PCR Detection Chemistry. Clinica Chimica Acta, 439, 231–250. https://doi.org/10.1016/J.CCA.2014.10.017
Park, M., Won, J., Choi, B. Y., & Lee, C. J. (2020). Optimization of primer sets and detection protocols for SARS-CoV-2 of coronavirus disease 2019 (COVID-19) using PCR and real-time PCR. Experimental and Molecular Medicine, 52(6), 963–977. https://doi.org/10.1038/s12276-020-0452-7
Prastyowati, A. (2020). Mengenal Karakteristik Virus SARS-CoV-2 Penyebab Penyakit COVID-19 Sebagai Dasar Upaya Untuk Pengembangan Obat Antivirus Dan Vaksin. BioTrends, 11(1), 1–10.
Soheili, Z., & Samiei, S. (2005). Real Time PCR: Principles and Application. Hepatitis Monthly, 83–87.
Wink, P. L., Volpato, F., Lima-Morales, D. de, Paiva, R. M., Wilig, J. B., Bock, H., Paris, F. de, & Barth, A. L. (2021). RT-qPCR half reaction optimization for the detection of SARS-CoV-2.
Yadav, T., & Saxena, S. K. (2020). Transmission Cycle of SARS-CoV and SARS-CoV-2. In S. K. Saxena (Ed.), Coronavirus Disease 2019 (COVID-19): Epidemiology, Pathogenesis, Diagnosis, and Therapeutics (pp. 33–42). Springer Singapore. https://doi.org/10.1007/978-981-15-4814-7_4
Yanti, B., Ismida, F. D., & Sarah, K. E. S. (2020). Perbedaan uji diagnostik antigen, antibodi, RT-PCR dan tes cepat molekuler pada Coronavirus Disease 2019. Jurnal Kedokteran Syiah Kuala, 20(3), 172–177. https://doi.org/10.24815/jks.v20i3.18719
Yuliana. (2020). Corona Virus Disease (Covid-19); Sebuah Tinjauan Literatur. WELLNESS AND HEALTHY MAGAZINE, 2(February), 187–192. https://doi.org/10.2307/j.ctvzxxb18.12
Yusuf, Z. K. (2010). Polymerase Chain Reaction (PCR). Saintek, 5(6).

Authors

Seprianto Seprianto
Muhammad Arreza
Titta Novianti
Febriana Dwi Wahyuni
Oktaviani Naulita Turnip
Roaslein Putri
Henny Saraswati
hennysaraswati@esaunggul.ac.id (Primary Contact)
Seprianto, S., Arreza, M., Novianti, T., Wahyuni, F. D., Turnip, O. N., Putri, R., & Saraswati, H. (2022). Optimization of Da An Gene Kit for SARS-CoV-2 Detection in Real-Time RT-PCR. BIOEDUSCIENCE, 6(2), 158–164. https://doi.org/10.22236/j.bes/628595

Article Details