Fat-Rich Food Review on Obesity Control through Induction Enzyme Inhibitors
Abstract
Background: Obesity is an imbalance between height and weight due to excessive body fat tissue. The purpose of writing this review is to find out the effect of enzyme inhibitor induction on fat-rich foods as control of obesity. Method: Writing and assessing source problems related to using literature study methods. Results: One way of controlling obesity is by regulating dietary patterns and consumption of lipase inhibitors. Inhibition of lipase is one of the most widely developed effective ways in diet medicine. Inhibitory compounds cause pancreatic lipase to lose its ability in decomposition that enters the blood. The potency of plant-origin lipase inhibitor compounds can be increased in both number and performance. Increasing the production of secondary metabolite group inhibitors is by fermentation of microorganisms. Conclusion: Inhibition of triglyceride hydrolysis through inhibition of lipase enzymes can decrease and prevent obesity. Secondary metabolite induction can be fermented with microorganisms. The production of secondary metabolite compounds in medicinal plants can be increased in the presence of fermentation. Flavonoids can decrease the accumulation of lipids in the heart, reduce glucose absorption, inhibit the breakdown of polysaccharides into monosaccharides.
Full text article
References
Al-Suwailem, A. K., Al-Tamimi, A. S., Al-Omar, M. A., & Al-Suhibani, M. S. (2006). Safety and mechanism of action of orlistat (tetrahydrolipstatin) as the first local antiobesity drug. JASR, 2, 205–208.
Al Shukor, N., Raes, K., Smagghe, G., & Van Camp, J. (2016). Flavonoids"¯: evidence for inhibitory effects against obesity and their possible mechanisms of action. Flavonoids and Antioxidants, 40, 496–514.
Anwar, K., Fadillaturrahmah, & D.P., S. (2017). Analisis Kandungan Flavonoid Total ektrak Etanol Daun Binjai (Mangifera caesia Jack.) dan Pengaruhnya terhadap Kada Glukosa Darah tinggi Tikus yang di Induksi Fruktosa-Lemak Tinggi. Jurnal Ilmiah Ibnu Sina, 2(1), 20–30.
Ayuratri, M. K., & Kusnadi, J. (2018). Aktivitas Anti Bakteri Kombucha Jahe (Zingiber officinale) (Kajian Varietas Jahe dan Konsentrasi Madu. Jurnal Pangan Dan Agroindustri, 5(3), 95–107.
Ballinger, A., & Peikin, S. R. (2002). Orlistat: its current status as an anti-obesity drug. European Journal of Pharmacology, 440(2–3), 109–117. https://doi.org/10.1016/S0014-2999(02)01422-X
Barua, A., Sen, S., Das, A. S., Talukdar, A., Hazarika, N., Barua, A. G., Baruah, A. M., & Barua, I. (2014). A comparative study of the in vitro antioxidant property of differentextracts of Acorus calamus Linn. Journal of Natural Product and Plant Resource, 4, 8–18.
Bray, G. A., & Ryan, D. H. (2007). Drug treatment of the overweight patient. Gastroenterology, 132(6), 2239–2252. https://doi.org/10.1053/J.GASTRO.2007.03.053
Comuzzie, A. G., Cole, S. A., Laston, S. L., Voruganti, V. S., Haack, K., Gibbs, R. A., & Butte, N. F. (2012). Novel Genetic Loci Identified for the Pathophysiology of Childhood Obesity in the Hispanic Population. PLoS ONE, 7(12), 1–9. https://doi.org/10.1371/journal.pone.0051954
Dhaniaputri, R. (2015). Mata kuliah struktur dan fisiologi tumbuhan sebagai pengantar pemahaman proses metabolisme senyawa fitokimia. Prosiding Seminar Nasional Pendidikan Biologi, 4(1), 636–645.
Drew, B. S., Dixon, A. F., & Dixon, J. (2007). Obesity management: Update on orlistat. Vascular Healt and Risk Management, 3(6), 817–821.
Filippatos, T. D., Derdemezis, C. S., Gazi, I. F., Nakou, E. S., Mikhailidis, D. P., & Elisaf, M. S. (2008). Orlistat-associated adverse effects and drug interactions: a critical review. Drug Safety, 31(1), 53–65. https://doi.org/10.2165/00002018-200831010-00005
García, L. A., Guillamón, E., Villares, A., Rostagno, M. A., & Martínez, J. A. (2009). Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res, 58(9), 537–552. https://doi.org/10.1007/s00011-009-0037-3
Han, L. K., Zheng, Y. N., Yoshikawa, M., Okuda, H., & Kimura, Y. (2005). Anti-obesity effects of chikusetsusaponins isolated from Panax japonicus rhizomes. BMC Complementary and Alternative Medicine, 5(1), 1–10. https://doi.org/10.1186/1472-6882-5-9/FIGURES/4
Hatano, T., Yamashita, A., Hashimoto, T., Ito, H., Kubo, N., Yoshiyama, M., Shimura, S., Itoh, Y., Okuda, T., & Yoshida, T. (1997). Flavan dimers with lipase inhibitory activity from Cassia nomame. Phytochemistry, 46, 893–900.
Iswantini, D., Darusman, L. K., & Fitriyani, A. (2010). Uji in Vitro Ekstrak Air Dan Etanol Dari Buah Asam Gelugur, Rimpang lengkuas dan kencur sebagai Inhibitor Akivitas Lipase Pankreas. Jurnal Sains Dan Teknologi Indonesia, 12(3), 15–20.
Kim, B. M., Cho, B. O., & Jang, S. Il. (2019). Anti-obesity effects of Diospyros lotus leaf extract in mice with high-fat diet-induced obesity. International Journal of Molecular Medicine, 43(1), 603–613. https://doi.org/10.3892/IJMM.2018.3941/HTML
Kovar, J., & Havel, R. J. (2002). Sources and properties of triglyceride-rich lipoproteins containing apoB-48 and apoB-100 in postprandial blood plasma of patients with primary combined hyperlipidemia. Journal of Lipid Research, 43(7), 1026–1034. https://doi.org/10.1194/JLR.M100435-JLR200
Listiyana, A. D., Mardiana, & Prameswari, G. N. (2013). Obesitas Sentral dan Kadar Kolesterol Darah Total. KEMAS: Jurnal Kesehatan Masyarakat, 9(1), 37–43. https://doi.org/10.15294/kemas.v9i1.2828
Lobstein, T. (2009). Denying obesity? European Journal of Public Health, 19(6), 570. https://doi.org/10.1093/EURPUB/CKP159
Luximon-Ramma, A., Bahorun, T., Soobrattee, M. A., & Aruoma, O. I. (2002). Antioxidant activities of phenolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula. Journal of Agricultural and Food Chemistry, 50(18), 5042–5047. https://doi.org/10.1021/JF0201172
Mancini, M. C., & Halpern, A. (2006). Pharmacological treatment of obesity. Arquivos Brasileiros de Endocrinologia & Metabologia, 50(2), 377–389. https://doi.org/10.1590/S0004-27302006000200024
McClendon, K. S., Riche, D. M., & Uwaifo, G. I. (2009). Orlistat: current status in clinical therapeutics. Expert Opinion on Drug Safety, 8(6), 727–744. https://doi.org/10.1517/14740330903321485
Moreno, D. A., Ilic, N., Poulev, A., Brasaemle, D. L., Fried, S. K., & Raskin, I. (2003). Inhibitory effects of grape seed extract on lipases. Nutrition, 19(10), 876–879. https://doi.org/10.1016/S0899-9007(03)00167-9
Moreno, D. A., Ilic, N., Poulev, A., & Raskin, I. (2006). Effects of Arachis hypogaea nutshell extract on lipid metabolic enzymes and obesity parameters. Life Sciences, 78(24), 2797–2803. https://doi.org/10.1016/J.LFS.2005.11.012
Murelina, E. M., & Wijayanti, E. D. (2018). Perbandingan Kadar Fenolik Total Sari Rimpang Temu Giring (Curcuma heyneana) Segar dan Terfermentasi. JC-T (Journal Cis-Trans): Jurnal Kimia Dan Terapannya, 2(2), 20–24. https://doi.org/10.17977/UM026V2I22018P020
Mutoh, M., Nakada, N., Matsukuma, S., Ohshima, S., Yoshinari, K., Watanabe, J., & Arisawa, M. (1994). Panclicins, novel pancreatic lipase inhibitors. I. Taxonomy, fermentation, isolation and biological activity. The Journal of Antibiotics, 47(12), 1369–1375. https://doi.org/10.7164/ANTIBIOTICS.47.1369
Ono, Y., Hattori, E., Fukaya, Y., Imai, S., & Ohizumi, Y. (2006). Anti-obesity effect of Nelumbo nucifera leaves extract in mice and rats. Journal of Ethnopharmacology, 106(2), 238–244. https://doi.org/10.1016/J.JEP.2005.12.036
Polyzos, S.A., Kountouras, J. & Mantzoros, C.S. (2019). Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism. Vol. 92: 82–97.
Pradono, D. I., Darusman, L. K., & Susanti, A. (2012). Inhibisi Lipase Pankreas secara In Vitro oleh Ekstrak Air dan Etanol Daun Asam Jawa (Tamarindus indica) dan Rimpang Kunci Pepet (Kaempferiae rotundae). Jurnal Natur Indonesia, 13(2), 146–154. https://doi.org/10.31258/JNAT.13.2.146-154
Rachmawati, R. K., Ardiaria, M., & Fitranti, D. Y. (2018). Asupan Protein dan Asam Lemak Omega 6 Berlebih Sebagai Faktor Risiko Kejadian Obesitas pada Anak Sekolah Dasar di Semarang. Journal of Nutrition College, 7(4), 162–168. https://doi.org/10.14710/JNC.V7I4.22275
Rahardjo, S. S., Ngatijan, & Pramono, S. (2006). Aktivitas lipase pankreas Rattus norvegicus akibat pemberian ekstrak etanol daun Jati Belanda (Guazuma ulmifolia Lamk.). Berkala Ilmu Kedokteran, 38(2006).
Rathnayake, K. M., Satchithananthan, A., Mahamithawa, S., & Jayawardena, R. (2013). Early life predictors of preschool overweight and obesity: A case-control study in Sri Lanka. BMC Public Health, 13(1), 1–6. https://doi.org/10.1186/1471-2458-13-994/TABLES/4
Rismawati, I., Usmar, Pakki, E., & Haryono, K. (2012). Uji Efek Anti Obesitas dari Susu Kedelai (Glicine max Mirril) pada Tikus (Rattus norvegicus). Jurnal Hasil Riset, 16(2), 107–110.
Rubio, M. A., Gargallo, M., Isabel Millán, A., & Moreno, B. (2007). Drugs in the treatment of obesity: sibutramine, orlistat and rimonabant. Public Health Nutrition, 10(10A), 1200–1205. https://doi.org/10.1017/S1368980007000717
Schrauwen, P., & Westerterp, K. R. (2000). The role of high-fat diets and physical activity in the regulation of body weight. British Journal of Nutrition, 84(4), 417–427. https://doi.org/10.1017/S0007114500001720
Shore, S. A. (2007). Obesity and asthma: implications for treatment. Curr Opin Pulm Med, 13(1), 56–62. https://doi.org/10.1097/MCP.0b013e3280110196
Simopoulos, A. P. (2013). Dietary omega-3 fatty acid deficiency and high fructose intake in the development of metabolic syndrome, brain metabolic abnormalities, and non-alcoholic fatty liver disease. Nutrients, 5(8), 2901–2923. https://doi.org/10.3390/NU5082901
Simopoulos, A. P. (2016). An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients, 8(3), 128. https://doi.org/10.3390/NU8030128
Siregar, F. A., & Makmur, T. (2020). Metabolisme Lipid dalam Tubuh. Jurnal Inovasi Kesehatan Masyarakat, 1(2), 60–66. https://doi.org/10.36656/JIKM.V1I2.293
Sulasiyah, Sarjono, P. R., & Aminin, A. L. N. (2018). Antioxidant from Turmeric Fermentation Products (Curcuma longa) by Aspergillus Oryzae. Jurnal Kimia Sains Dan Aplikasi, 21(1), 13–18. https://doi.org/10.14710/JKSA.21.1.13-18
Teixeira, L. G., Leonel, A. J., Aguilar, E. C., Batista, N. V., Alves, A. C., Coimbra, C. C., Ferreira, A. V. M., De Faria, A. M. C., Cara, D. C., & Alvarez Leite, J. I. (2011). The combination of high-fat diet-induced obesity and chronic ulcerative colitis reciprocally exacerbates adipose tissue and colon inflammation. Lipids in Health and Disease, 10. https://doi.org/10.1186/1476-511X-10-204
Terra, X., Montagut, G., Bustos, M., Llopiz, N., Ardèvol, A., Bladé, C., Fernández-Larrea, J., Pujadas, G., Salvadó, J., Arola, L., & Blay, M. (2009). Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. The Journal of Nutritional Biochemistry, 20(3), 210–218. https://doi.org/10.1016/J.JNUTBIO.2008.02.005
Triyanti, T., & Ardila, P. (2020). Asupan Lemak sebagai Faktor Dominan terhadap Obesitas Sentral pada Wanita Dewasa. Jurnal Gizi Dan Pangan Soedirman, 3(2), 133–143. https://doi.org/10.20884/1.JGPS.2019.3.2.2053
Vásquez, F. D., Corvalán, C. L., Uauy, R. E., & Kain, J. A. (2017). Anthropometric indicators as predictors of total body fat and cardiometabolic risk factors in Chilean children at 4, 7 and 10 years of age. European Journal of Clinical Nutrition, 71(4), 536–543. https://doi.org/10.1038/EJCN.2016.213
Voshol, P. J., Rensen, P. C. N., van Dijk, K. W., Romijn, J. A., & Havekes, L. M. (2009). Effect of plasma triglyceride metabolism on lipid storage in adipose tissue: studies using genetically engineered mouse models. Biochimica et Biophysica Acta, 1791(6), 479–485. https://doi.org/10.1016/J.BBALIP.2008.12.015
Wang, X., Ma, B., Li, G., Sheng, C., Yang, P., Gao, J., & Qu, S. (2020). Glucose-Lipid Metabolism in Obesity with Elevated Prolactin Levels and Alteration of Prolactin Levels After Laparoscopic Sleeve Gastrectomy. Undefined, 30(10), 4004–4013. https://doi.org/10.1007/S11695-020-04771-2
Welty, F. K., Lichtenstein, A. H., R. Barrett, P. H., Dolnikowski, G. G., & Schaefer, E. J. (1999). Human apolipoprotein (Apo) B-48 and ApoB-100 kinetics with stable isotopes. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(12), 2966–2974. https://doi.org/10.1161/01.ATV.19.12.2966
Wijaya, H., & Surdijati, S. (2020). Efek Suplementasi Virgin Coconut Oil terhadap Parameter Metabolik dan Antropometrik Tikus Wistar Jantan Obesitas. Journal of Nutrition College, 9(1), 20–30. https://doi.org/10.14710/JNC.V9I1.25324
Yim, T. K., Wu, W. K., Mak, D. H., & Ko, K. M. (1998). Myocardial protective effect of an anthraquinone-containing extract of Polygonum multiflorum ex vivo. Planta Med, 64(7), 607–611. https://doi.org/10.1055/s-2006-957531
Yoshikawa, M., Shimoda, H., Nishida, N., Takada, M., & Matsuda, H. (2002). Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats. The Journal of Nutrition, 132(7), 1819–1824. https://doi.org/10.1093/JN/132.7.1819
Yoshinari, K., Aoki, M., Ohtsuka, T., Nakayama, N., Itezono, Y., Mutoh, M., Watanabe, J., & Yokose, K. (1994). Panclicins, novel pancreatic lipase inhibitors. II. Structural elucidation. The Journal of Antibiotics, 47(12), 1376–1384. https://doi.org/10.7164/ANTIBIOTICS.47.1376
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.