Main Article Content


Background: This study aimed to evaluate the growth ability of cassava mini stem cuttings with different node number and a variety of stem cutting shapes and their correlation with starch content in the stems at initial growth stages. Methods. In this study, the viability of cassava stem cuttings was identified in two type experiments i.e. mini-stem cuttings consisting 1 and 2 nodes and shape variation of single node mini-stem cutting. Parameters observed were shoots emergence period, number of sprouting cuttings, shoots number  of individual stem cuttings, shoots height and number of leaves. In addition, starch histochemical test was  also carried out on stems of young shoots and initial stem cuttings using Lugol’s solution. Results. Both cassava stem cuttings consisting of 1 and 2 buds indicated the same survival rate of 100%. 1 bud stem cuttings with different shapes showed different survival rate, i.e. 60-80% for semicircular and fully circular cuttings and 30-40% for box shape cuttings. The difference in survival rate with different stem size is probably related to the availability of the amount of starch to support shoots growth. Observations at week 3 after planting generally showed that the stem cuttings with 2 buds were higher than those of stem with 1 bud. Conclusion: There were differences in the scores on the starch content test qualitatively with Lugol staining, in various parts of the plant originating from 1 bud and 2 bud cuttings which may indicate a breakdown of starch during shoot development.


Buds Cassava Mini stem cuttings Starch

Article Details

How to Cite
Hartati, S., Fitriani, H., Taryana, N., Nawawi, N., Cahyani, Y., Kurniawati, S., & Sudarmonowati, E. (2021). The Survival Rate and Starch Histochemical Assay of Various Stem Cutting Conditions of Mentega 2 Cassava Genotype at Initial Growth Stage. BIOEDUSCIENCE, 5(1), 40-48.


  1. Andriotis, V. M. E., Rejzek, M., Barclay, E., Rugen, M. D., Field, R. A., & Smith, A. M. (2016). Cell wall degradation is required for normal starch mobilisation in barley endosperm. Scientific Reports, 6, 1–15.
  2. Ardian. (2012). Pertumbuhan Akar dan Tunas Stek Batang Mini Tanaman Ubi kayu (Manihot esculenta Crantz.).
  3. Barbier, F., Péron, T., Lecerf, M., Perez-Garcia, M. D., Barrière, Q., Rolčík, J., Boutet-Mercey, S., Citerne, S., Lemoine, R., Porcheron, B., Roman, H., Leduc, N., Le Gourrierec, J., Bertheloot, J., & Sakr, S. (2015). Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida. Journal of Experimental Botany, 66(9), 2569–2582.
  4. Bridgemohan, P., & Onell, S. H. B. (2014). Effect of initial stem nodal cutting strength on dry matter production and accumulation in cassava (Manihot esculenta Crantz). Journal of Plant Breeding and Crop Science, 6(6), 64–72.
  5. Effendi, S. (2002). Teknik perbanyakan ubi kayu secara mudah dan murah. Buletin Teknik Petanian, 7(2), 66–68.
  6. Ekanayake, I. J., Osiru, D. S. O., & Porto, M. C. M. (1998). Physiology of cassava.
  7. Fernie, A. R., Bachem, C. W. B., Helariutta, Y., Neuhaus, H. E., Prat, S., Ruan, Y. L., Stitt, M., Sweetlove, L. J., Tegeder, M., Wahl, V., Sonnewald, S., & Sonnewald, U. (2020). Synchronization of developmental, molecular and metabolic aspects of source–sink interactions. In Nature Plants (Vol. 6, Issue 2, pp. 55–66). Nature Research.
  8. Figueiredo, P. G., Moraes-Dallaqua, M. A., Bicudo, S. J., & Tanamati, F. Y. (2013). Starch accumulation in cassava roots: spatial and temporal distribution. African Journal of Agricultural Research, 8(46), 5712–5715.
  9. Hartati, S., Fitriani, H., Supatmi, & Sudarmonowati, E. (2012). Karakter umbi dan nutrisi tujuh genotip ubi kayu (Manihot esculenta). Agricola, 2(2), 101–110.
  10. Hedhly, A., Vogler, H., Schmid, M. W., Pazmino, D., Gagliardini, V., Santelia, D., & Grossniklaus, U. (2016). Starch turnover and metabolism during flower and early embryo development. Plant Physiology, 172(4), 2388–2402.
  11. Ismail, N., Nordin, K., Hamzah, N., Jamaluddin, M. A., & Bahari, S. A. (2016). Physical Properties of Cassava (Manihot Esculenta) Stem at Different Locations Along the Height. International Journal of Advances in Science Engineering and Technology, 4(3), 2321–9009.
  12. Joshi, R. (2018). Role of Enzymes in Seed Germination (Vol. 6, Issue 2).
  13. Liu, S. L., Siao, W., & Wang, S. J. (2010). Changing sink demand of developing shoot affects transitory starch biosynthesis in embryonic tissues of germinating rice seeds. Seed Science Research, 20(3), 137–144.
  14. Lowe, S. B., Mahon, J. D., & Hunt, L. A. (2011). Early development of cassava (Manihot esculenta). Canadian Journal of Botany, 60(12), 3040–3048.
  15. Neves, R. de J., Souza, L. S., & Oliveira, E. J. de. (2020). A leaf bud technique for rapid propagation of cassava (Manihot esculenta Crantz). Scientia Agricola, 77(2), 2020.
  16. NurulNahar, E., & Tan, S. L. (2012). Cassava mini-cuttings as a source of planting material. J. Trop. Agric. and Fd. Sc., 40(1), 2–8.
  17. Prasitsarn, M., Polthanee, A., Trelo-Ges, V., & Simmons, R. W. (2018). Effects Of Cutting Length And Bud Removal On Root Yield And Starch Content Of Cassava Under Rainfed Conditions. Experimental Agriculture, 54(3), 336–348.
  18. Remison, S. U., Omorodion, E., & Eifedyi, E. K. (2015). A re-examination of the effects of length of stem cuttings on the growth and yield of cassava (Manihot esculenta CRANTZ). Nigerian Annals of Natural Sciences, 15(1), 009–013.
  19. Roja, A. (2009). Ubi Kayu: Varietas dan Teknologi Budidaya. Makalah, Balai Pengkajian Teknologi Pertanian Sumatera Barat.
  20. Saleh, N., Taufiq, A., Widodo, Y., Sundari, T., Gusyana, D., Rajagukguk, R. P., & Suseno, S. A. (2016). Pedoman Budi Daya Ubi Kayu di Indonesia. IAARD Press.
  21. Sundari, T. (2010). Petunjuk teknis : pengenalan varietas unggul dan teknik budidaya ubi kayu (materi pelatihan agribisnis bagi KMPH). Report No. 55.STE. Federal Ministry for The Environment, Nature Conseravation and Nuclear Safety.
  22. Sutamihardja, R., Yuliani, N., Laelasari, H., Susanty, D., Studi, P., Fmipa, K., Nusa, U., Bogor, B., Program, ), Fmipa, S. B., Kh, J., Iskandar, S., & Tanah, C. (2018). Hidrolisis Asam pada Tepung Pati Ubi Jalar Putih (Ipomoea batatas L.) dalam Pembuatan Gula Cair. In JURNAL SAINS NATURAL (Vol. 6, Issue 2).
  23. Tixier, A., Gambetta, G. A., Godfrey, J., Orozco, J., & Zwieniecki, M. A. (2019). Non-structural Carbohydrates in Dormant Woody Perennials; The Tale of Winter Survival and Spring Arrival. Frontiers in Forests and Global Change, 2, 18.
  24. Vaz, A. P. A., Kerbauy, G. B., & Figueiredo-Ribeiro, R. C. L. (1998). Changes in soluble carbohydrates and starch partitioning during vegetative bud formation from root tips of Catasetum fimbriatum (Orchidaceae). Plant Cell, Tissue and Organ Culture, 54(2), 105–111.
  25. Wei, M., Andersson, R., Xie, G., Salehi, S., Boström, D., & Xiong, S. (2018). Properties of Cassava Stem Starch Being a New Starch Resource. Starch/Staerke, 70(5–6).
  26. Yan, W., Wu, X., Li, Y., Liu, G., Cui, Z., Jiang, T., Ma, Q., Luo, L., & Zhang, P. (2019). Cell wall invertase 3 affects cassava productivity via regulating sugar allocation from source to sink. Frontiers in Plant Science, 10.
  27. Zhao, M., Zhang, H., Yan, H., Qiu, L., & Baskin, C. C. (2018). Mobilization and Role of Starch, Protein, and Fat Reserves during Seed Germination of Six Wild Grassland Species. Frontiers in Plant Science, 9, 234.
  28. Zwieniecki, M. A., Tixier, A., & Sperling, O. (2015). Temperature-assisted redistribution of carbohydrates in trees. American Journal of Botany, 102(8), 1216–1218. Conflict

DB Error: Unknown column 'Array' in 'where clause'