Main Article Content

Abstract

Background: The record and research on macrofungi from Taman Eden 100, Toba-Samosir Regency, North Sumatra, Indonesia, was conducted to provide some information about their current status and potential use in the future. Methods: This research was divided into three steps:  exploration, identification, and literature studies of the potential use from the identified macrofungi. Results: The research had successfully identified 14 macrofungi that were classified into 4 orders and 9 families. All the macrofungi found were Basidiomycota, namely Gymnopilus sp., Marasmiellus sp.1, Marasmiellus sp.2, Marasmius sp., Favolaschia sp., Coprinellus sp., Coprinopsis sp., Auricularia sp.1, Auricularia sp.2, Auricularia sp.3, Auricularia sp.4, Tylopilus sp., Suillus sp., and  Russula sp. The identified macrofungi are potentially used as food supplements, medicine, bio-fertilisers, bioherbicides, and bioremediation agents based on the literature. Conclusions: Taman Eden 100 has a unique fungal diversity of macrofungi and has never been published in a scientific journal. Further investigations are needed to determine the fungal diversity and potential use of macrofungi in other places in Taman Eden 100.

Keywords

Fungal diversity Macrofungi Potency of macrofungi Taman Eden 100

Article Details

How to Cite
Dwi Nurhayat, O., Permana Putra, I., Heris Anita, S., & Heri Yuli Yanto, D. (2021). Notes Some Macro Fungi From Taman Eden 100, Kawasan Toba, Sumatera Utara, Indonesia: Description and Its Potency. BIOEDUSCIENCE, 5(1), 30-39. https://doi.org/10.22236/j.bes/515326

References

  1. Anita, S. H., Sari, F. P., Heri, D., & Yanto, Y. (2019). Decolorisation of Synthetic Dyes by Ligninolytic Enzymes from Trametes hirsuta D7. Makara, 23(1), 44–50. https://doi.org/10.7454/mss.v23i1.10803
  2. Arora, D. (1986). Mushrooms Demystified. Teen Speed Press.
  3. Banks, A. M., Song, L., Challis, G. L., Bailey, A. M., & Foster, D. (2020). Bovistol B , bovistol D and strossmayerin : Sesquiterpene metabolites from the culture filtrate of the basidiomycete Coprinopsis strossmayeri. PLoS ONE, 15(4), 1–9. https://doi.org/10.1371/journal.pone.0229925
  4. Boa, E. (2004). Wild Edible Mushroom: A Global Overview of Their use and Importance to People, Food and Agriculture Organization of The United Nations (17th ed.). Viale delle Terme di Caracalla.
  5. Chenthamarakshan, A., Parambayil, N., Miziriya, N., Soumya, P. S., & Lakshmi, M. S. K. (2017). Optimisation of laccase production from Marasmiellus palmivorus LA1 by Taguchi method of Design of experiments. BMC Biotechnology, 17(12), 1–10. https://doi.org/10.1186/s12896-017-0333-x
  6. Darajati, W., Pratiwi, S., Herwinda, E., Radiansyah, A. D., Nalang, V. S., Nooryanto, B., Rahajoe, J. S., Ubaidillah, R., Maryanto, I., Kurniawan, R., Prasetyo, T. A., Rahim, A., Jefferson, J., & Hakim, F. (2016). Indonesian Biodiversity Strategy and Action Plan (IBSAP) 2015-2020. Bappenas.
  7. Desjardin, D. E., Wood, M., & Stevens, F. A. (2015). California mushrooms: The comprehensive identification guide. Oregon.
  8. Fitria, M. A., Thomy, Z., Samingan, Harnelly, E., & Kusuma. (2020). The potency of mushrooms as food alternative in the forest park of Pocut The potency of mushrooms as food alternative in the forest park of Pocut Meurah Intan , Saree , Aceh Besar. Conference Series: Earth and Environmental Science, 425 012058. https://doi.org/10.1088/1755-1315/425/1/012058
  9. Guerrero-galán, C., Calvo-polanco, M., Zimmermann, S. D., & Zimmermann, S. D. (2019). Ectomycorrhizal symbiosis helps plants to challenge salt stress conditions. Mycorrhiza, 291–301.
  10. Gull-e-Laala, Raja, M. U., Riaz, S., Gardezi, A., Irshad, G., Akram, A., & Bodlah, I. (2019). Study of macro-fungi belonging to order Agaricales of Poonch District Azad Jammu and Kashmir ( AJK ). Pure and Applied Biology, 8(1), 27–33. https://doi.org/http://dx.doi.org/10.19045/bspab.2018.700160
  11. Hyde, K. D., Xu, J., Rapior, S., Jeewon, R., & Lumyong, S. (2019). The amazing potential of fungi : 50 ways we can exploit fungi industrially. Fungal Diversity, 97(1), 1–136. https://doi.org/10.1007/s13225-019-00430-9
  12. Khatua, S., Dutta, A. K., & Acharya, K. (2015). Prospecting Russula senecis : a delicacy among the tribes of West Bengal. PeerJ, 3, e810. https://doi.org/10.7717/peerj.810
  13. Kipfer, T., Wohlgemuth, T., Heijden, M. G. A. Van Der, Ghazoul, J., & Egli, S. (2012). Growth Response of Drought-Stressed Pinus sylvestris Seedlings to Single- and Multi-Species Inoculation with Ectomycorrhizal Fungi. PLoS ONE, 7(4), e35275. https://doi.org/10.1371/journal.pone.0035275
  14. Kombrink, A., Tayyrov, A., Essig, A., Stöckli, M., Micheller, S., Hintze, J., Heuvel, Y. Van, Dürig, N., Pauli, C. L., Markus, T. K., & Markus, A. (2019). Induction of antibacterial proteins and peptides in the coprophilous mushroom Coprinopsis cinerea in response to bacteria. The ISME Journal, 13, 588–602. https://doi.org/10.1038/s41396-018-0293-8
  15. Kornsakulkarn, J., Palasarn, S., Choowong, W., Thongpanchang, T., Boonyuen, N., Choeyklin, R., Boonpratuang, T., Isaka, M., & Thongpanchang, C. (2019). Antimalarial 9 ‑ Methoxystrobilurins, Oudemansins, and Related Polyketides from Cultures of Basidiomycete Favolaschia Species. Journal of Natural Products. https://doi.org/10.1021/acs.jnatprod.9b00647
  16. Largent, D. L. (1977). How to Identify Mushrooms to Genus I: Macroscopic Features. Mad River Press Inc.
  17. Lee, I., Cho, S., & Seok, S. (2008). Chemical Constituents of Gymnopilus spectabilis and Their Antioxidant Activity. Mycobiology, 36(1), 55–59. https://doi.org/10.4489/MYCO.2008.36.1.055
  18. Lehto, T., & Zwiazek, J. J. (2011). Ectomycorrhizas and water relations of trees : a review. 71–90. https://doi.org/10.1007/s00572-010-0348-9
  19. Lenoir, I., Fontaine, J., & Sahraoui, A. L. (2016). Phytochemistry Arbuscular mycorrhizal fungal responses to abiotic stresses : A review. Phytochemistry. https://doi.org/10.1016/j.phytochem.2016.01.002
  20. Liu, F., Luo, K., Yu, Z., Co, N., & Wu, S. (2009). Chemico-Biological Interactions Suillin from the mushroom Suillus placidus as potent apoptosis inducer in human hepatoma HepG2 cells. Chemico-Biological Interactions, 181, 168–174. https://doi.org/10.1016/j.cbi.2009.07.008
  21. Liu, T., Liu, T., Liu, H., Fan, H., Chen, B., Wang, D., Zhang, Y., & Sun, F. (2019). Preparation and Characterisation of a Novel Polysaccharide-Iron ( III ) Complex in Auricularia auricula Potentially Used as an Iron Supplement. BioMed Research International, 14. https://doi.org/10.1155/2019/6416941
  22. Nguyen, T. K., Lee, M. W., Yoon, K. N., Kim, H. Y., & Jin, G. (2015). In vitro antioxidant, anti-diabetic, anti-cholinesterase, tyrosinase and nitric oxide inhibitory potential of fruiting bodies of Coprinellus micaceus. Journal of Mushrooms, 12(4), 330–340. https://doi.org/10.14480/JM.2014.12.4.330
  23. Nowacka, N., Nowak, R., Drozd, M., Olech, M., & Los, R. (2015). Antibacterial , Antiradical Potential and Phenolic Compounds of Thirty-One Polish Mushrooms. PLoS ONE, 10(10), 1–13. https://doi.org/10.1371/journal.pone.0140355
  24. O’Dell, T., Lodge, D., & Mueller, G. M. (2004). Approaches to sampling macrofungi. Biodiversity of Fungi: Inventory and Monitoring Methods, 163–168.
  25. Pemerintah Kabupaten Toba Samosir. (2014). Pesona Alam Taman Eden 100, dilihat 17 Juli2020.
  26. Pointing, S. B., Pelling, A. L., Smith, G. J. D., Hyde, K. D., & Reddy, C. A. (2005). Screening of basidiomycetes and xylariaceous fungi for lignin peroxidase and laccase gene-specific sequences. 109(January), 115–124. https://doi.org/10.1017/S0953756204001376
  27. Putra, I. P. (2020a). Allelopathic Activity Of Some Wild Mushroom In Indonesia. Fungal Territory, 3(1), 1–3. https://doi.org/10.36547/ft.2020.3.1.1-3
  28. Putra, I. P. (2020b). Catatan Beberapa Jamur Makro di Pulau Belitong : Deskripsi dan Potensinya Note on Macro Fungi on Belitong Island : Description and Potential. Bioeduscience, 4(1), 11–20.
  29. Putra, I. P. (2020c). Record On Macroscopic Fungi At IPB University Campus Forest : Description And Potential Utilisation. IJOSE, 4(1), 1–11.
  30. Putra, I. P., Amelya, M. P., Nugara, N. H., & Zamia, H. Z. (2019). Notes of Some Macroscopic Fungi at IPB University Campus Forest: Diversity and Potency. Biota, 12(2), 57–71. https://doi.org/10.20414/jb.v12i2.192.
  31. Putra, I. P., Mardiyah, E., Amalia, N. S., & Mountara, A. (2017). Ragam jamur asal serasah dan tanah di Taman Nasional Ujung Kulon Indonesia. Jurnal Sumberdaya Hayati, 3(1), 1–7.
  32. Putra, I. P., Nasrullah, M. A., & Dinindaputri, T. A. (2019). Study on Diversity and Potency of Some Macro Mushroom at Gunung Gede Pangrango National Park. Buletin Plasma Nutfah, 25(2), 1–14. https://doi.org/10.21082/blpn.v25n2.2019.p1-14
  33. Putra, I. P., Sitompul, R., & Chalisya, N. (2018). Ragam Dan Potensi Jamur Makro Asal Taman Wisata Mekarsari Jawa Barat. Al-Kauniyah: Jurnal Biologi, 11(2), 133–150. https://doi.org/10.15408/kauniyah.v11i2.6729
  34. Ranadive, K. R., Belsare, M. H., Deokule, S. S., & Jagtap, N. V. (2013). Glimpses of antimicrobial activity of fungi from World . Journal on New Biological Reports, 2(2), 142–162.
  35. Retnowati, A. (2004). Notes on diversity of Agaricales in Gunung Halimun National Park (Catatan Tentang Keanekaragaman Jamur Agaricales di Taman Nasional Gunung Halimun). Floribunda, 7(4), 51–55.
  36. Retnowati, A. (2007). Two wild edible russula (Agaricales: Russulaceae) from East Kalimantan. Floribunda, 3(4), 109–112.
  37. Retnowati, A. (2015). Lepiota Viriditincta (Berk . & Broome) SACC: a Species From Bali With Grey-Green Colour Changing When Dried. Floribunda, 5(3), 111–113.
  38. Retnowati, Atik. (2004). Notes On Diversity Of Agaricales In Gunung Halimun National Park [ Catatan Tentang Keanekaragaman Jamur Agaricales di Taman Nasional Gunung Halimun ]. 7(April), 51–55.
  39. Rokuya, I., Yoshio, O., Tsugia, H. (2011). Fungi of Japan. Yama-Kei Publishers.
  40. Sing, N. N., Husaini, A., Zulkharnain, A., & Roslan, H. A. (2017). Decolourisation Capabilities of Ligninolytic Enzymes Produced by Marasmius cladophyllus UMAS MS8 on Remazol Brilliant Blue R and Other Azo Dyes. BioMed Research International, 8. https://doi.org/10.1155/2017/1325754
  41. Sum, W. C., Indieka, S. A., & Matasyoh, J. C. (2019). Antimicrobial activity of Basidiomycetes fungi isolated from a Kenyan tropical forest. African Journal of Biotechnology, 18(5), 112–123. https://doi.org/10.5897/AJB2018.16660
  42. Susan Dewi, R. A. (2017). Notes on Some Macro Fungi From Enggano Island: Diversity and its Potency. Floribunda, 16(3), 219–330.
  43. Šušaníková, I., Kvasnicová, A., Brzková, Ž., Ďuriška, O., & Mučaji, P. (2018). New biological findings of ethanol and chloroform extracts of fungi S uillellus rubrosanguineus and Tylopilus felleus. Interdisciplinary Toxicology, 11(3), 204–208. https://doi.org/10.2478/intox-2018-0018
  44. Tamur, H. A., Al-janabi, H. J., & Al-janabi, J. K. A. (2019). Characterisation and Antagonistic Activity of New Causal Agent of Wilt Disease in Imperata cylindrica ( Marasmius palmivorus ). Journal of Pure and Applied Microbiology, 13(3), 1525–1536. https://doi.org/https://doi.org/10.22207/JPAM.13.3.24
  45. Tesanovic, K., Pejin, B., Ibul, F. S., Matavulj, M., Raseta, M., Janjusevic, L., & Karaman, M. (2017). A comparative overview of antioxidative properties and phenolic profiles of different fungal origins : fruiting bodies and submerged cultures of Coprinus comatus and Coprinellus truncorum. Journal of Food Science and Technology, 54(2), 430–438. https://doi.org/10.1007/s13197-016-2479-2
  46. Wahyudi, T. R., & P, S. R. (2016). Keanekaragaman Jamur Basidiomycota Di Hutan Tropis Dataran Rendah Sumatera , Indonesia ( Studi Kasus di Arboretum Fakultas Kehutanan Universitas Lancang Kuning Pekanbaru ). 11(2), 98–111.
  47. Zhu, H., He, C., & Chu, Q. (2011). Inhibition of quorum sensing in Chromobacterium violaceum by pigments extracted from Auricularia auricular. Letters in Applied Microbiology, 52, 269–274. https://doi.org/10.1111/j.1472-765X.2010.02993.x