Antimicrobial Activity and Identification of Gene Encoding Enterocin Enterococcus faecalis K2B1 Isolated from Toraja's Belang Buffalo Milk Antimikroba dan Gen Penyandi
Abstract
Background: Enterocin in Enterococcus is coded by enterocin encoding genes namely A, B, P and L50A / B. The purpose of this study was to identify enterocin gene encoding enterococcus faecalis K2B1 probiotic candidate from Belang Toraja buffalo milk and antimicrobial activity to S. typhi. Methods: identification of enterocin gene encoding using ent A, B, P and L50A / B, partial purification using ammonium sulfate on 80 % concentration and antimicrobial activity against to Salmonella typhi using disk diffusion method. The results of PCR amplification are then sequenced and BLASTX on NCBI. Result: Antimicrobial activity of Precipitate and crude against S. typhi are 193 and 201 respectively. Identification gene encoding enterocin shows that Ent A, B and P cannot be amplified and only EntL50A / B can be amplified with a sequence size of 86 bp. The sequence of enterocin encoding genes in E. faecalis K2B1 has 94% similarity with hypothetical protein EB34_00789 E. faecalis on GenBank with accession number RBR60004.1 Conclusion: EntL50A / B E. faecalis K2B1 has a size of 86 bp and is 94% identical to the hypothetical protein EB34_00789 and Enterocin can be used as antimicrobial or bio preservative.
Full text article
References
Arqués, J. L., Rodríguez, E., Langa, S., Landete, J. M., & Medina, M. (2015). Antimicrobial activity of lactic acid bacteria in dairy products and gut: Effect on pathogens. BioMed Research International, 2015. https://doi.org/10.1155/2015/584183
Avaiyarasi, N., Ravindran, A., & Venkatesh, P. (2016). In Vitro Selection, Characterization and Cytotoxic Effect of Bacteriocin of Lactobacillus Sakei GM3 Isolated from Goat Milk. Food Control, 69, 124–133.
Banwo, K., Sanni, A., & Tan, H. (2013). Technological properties and probiotic potential of Enterococcus faecium strains isolated from cow milk. Journal of Applied Microbiology, 114(1), 229–241. https://doi.org/10.1111/jam.12031
Batdorj, B., Dalgalarrondo, M., Choiset, Y., Pedroche, J., Métro, F., Prévost, H., Chobert, J. M., & Haertlé, T. (2006). Purification and characterization of two bacteriocins produced by lactic acid bacteria isolated from Mongolian airag. Journal of Applied Microbiology, 101(4), 837–848. https://doi.org/10.1111/j.1365-2672.2006.02966.x
Braí¯ek, O. Ben, Ghomrassi, H., Cremonesi, P., Morandi, S., Fleury, Y., Le Chevalier, P., Hani, K., Bel Hadj, O., & Ghrairi, T. (2017). Isolation and characterisation of an enterocin P-producing Enterococcus lactis strain from a fresh shrimp (Penaeus vannamei). Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 110(6), 771–786. https://doi.org/10.1007/s10482-017-0847-1
Dezwaan, D. C., Mequio, M. J., Littell, J. S., Allen, J. P., Rossbach, S., & Pybus, V. (2007). Purification and characterization of enterocin 62-6, a two-peptide bacteriocin produced by a vaginal strain of Enterococcus faecium: Potential significance in bacterial vaginosis. Microbial Ecology in Health and Disease, 19(4), 241–250. https://doi.org/10.1080/08910600701538240
Drider, D., Fimland, G., Héchard, Y., McMullen, L. M., & Prévost, H. (2006). The Continuing Story of Class IIa Bacteriocins. Microbiology and Molecular Biology Reviews, 70(2), 564–582. https://doi.org/10.1128/mmbr.00016-05
Ferreira, A. E., Canal, N., Morales, D., Fuentefria, D. B., & Corçí£o, G. (2007). Characterization of enterocins produced by Enterococcus mundtii isolated from humans feces. Brazilian Archives of Biology and Technology, 50(2), 249–258. https://doi.org/10.1590/S1516-89132007000200010
Foulquie-Moreno, M. R., Rea, M. C., Cogan, T. M. and, & De Vuyst, L. (2003). Applicability of a Bacteriocin-Producing Enterococcus faecium as Co-culture in Cheddar Cheese Manufacture. Int J Food Microbiol, 81, 73–84.
Hosseini, S. V., Arlindo, S., Böhme, K., Fernández-No, C., Calo-Mata, P., & Barros-Velázquez, J. (2009). Molecular and probiotic characterization of bacteriocin-producing Enterococcus faecium strains isolated from nonfermented animal foods. Journal of Applied Microbiology, 107(4), 1392–1403. https://doi.org/10.1111/j.1365-2672.2009.04327.x
Izquierdo, E., Bednarczyk, A., Schaeffer, C., Cai, Y., Marchioni, E., Van Dorsselaer, A., & Ennahar, S. (2008). Production of enterocins L50A, L50B, and IT, a new enterocin, by Enterococcus faecium IT62, a strain isolated from Italian ryegrass in Japan. Antimicrobial Agents and Chemotherapy, 52(6), 1917–1923. https://doi.org/10.1128/AAC.01409-07
Maky, M. A., Ishibashi, N., Zendo, T., Perez, R. H., Doud, J. R., Karmi, M., & Sonomoto, K. (2015). Enterocin F4-9, a novel O-linked glycosylated bacteriocin. Applied and Environmental Microbiology, 81(14), 4819–4826. https://doi.org/10.1128/AEM.00940-15
Ogaki, M. B., Rocha, K. R., Terra, M. R., Furlaneto, M. C., & Furlaneto-Maia, L. (2016). Screening of the enterocin-encoding genes and antimicrobial activityin Enterococcus species. Journal of Microbiology and Biotechnology, 26(6), 1026–1034. https://doi.org/10.4014/jmb.1509.09020
Rizqiati, H., Sumantri, C., Noor, R. R., Damayanthi, E., & Rianti, E. I. (2015). Isolation and identification of indigenous lactic acid bacteria from North Sumatra river buffalo milk. Jurnal Ilmu Ternak Dan Veteriner, 20(2), 87–94. https://doi.org/10.14334/jitv.v20i2.1163
Saelim, K., Sohsomboon, N., Kaewsuwan, S., & Maneerat, S. (2012). Probiotic properties of Enterococcus faecium CE5-1 producing a bacteriocin-like substance and its antagonistic effect against antibiotic-resistant enterococci in vitro. Czech Journal of Animal Science, 57(11), 529–539. https://doi.org/10.17221/6386-cjas
Sarra, M., Taoufik, G., Patrick, L. C., Benjamin, B., Yannick, F., & Khaled, H. (2013). Isolation and Characterization of Enterococci Bacteriocinic Strains from Tunisian Fish Viscera. Food and Nutrition Sciences, 04(06), 701–708. https://doi.org/10.4236/fns.2013.46089
Tambekar, D. H., & Bhutada, S. A. (2010). An Evaluation of Probiotic Potential of Lactobacillus Sp. From Milk of Domestic Animals and Commercial Available Probiotic Preparations in Prevention of Enteric Bacterial Infections. Recent Research in Science and Technology, 2(10), 82–88. www.recent-science.com
Thirumurugan, A., Ramachandran, S., & Gobikrishnan, S. (2015). Optimization of medium components for maximizing the bacteriocin production by Lactobacillus plantarum ATM11 using statistical design. International Food Research Journal, 22(3), 1272–1279.
Todorov, S. D. (2009). Bacteriocins from Lactobacillus plantarum production, genetic organization and mode of action: produçí£o, organizaçí£o genética e modo de açí£o. Brazilian Journal of Microbiology, 40(2), 209–221. https://doi.org/10.1590/s1517-83822009000200001
ToÄŸay, S. í–., Ay, M., Güneşer, O., & Yüceer, Y. K. (2016). Investigation of antimicrobial activity and entA and entB genes in Enterococcus faecium and Enterococcus faecalis strains isolated from naturally fermented Turkish white cheeses. Food Science and Biotechnology, 25(6), 1633–1637. https://doi.org/10.1007/s10068-016-0251-z
Udhayashree, N., Senbagam, D., & Senthilkumar, B. (2012). Production of Bacteriocin and Their Application in Food Products. Asian Pac Trop Biomed, 2(1), 406–410.
Umniyati, S., Octavia, B., Pendidikan, J., & Fmipa, B. (2006). The Optimalization Of Bacteriocyn Production By Streptococcus Sp . And It ' S Antibacterial Activities. Universitas Negeri Yogyakarta.
Vimont, A., Fernandez, B., Hammami, R., Ababsa, A., Daba, H., & Fliss, I. (2017). Bacteriocin-producing Enterococcus faecium LCW 44: A high potential probiotic candidate from raw camel milk. Frontiers in Microbiology, 8(MAY), 1–12. https://doi.org/10.3389/fmicb.2017.00865
Zacharof, M. P., & Lovitt, R. W. (2012). Bacteriocins Produced by Lactic Acid Bacteria a Review Article. APCBEE Procedia, 2(April 2012), 50–56. https://doi.org/10.1016/j.apcbee.2012.06.010
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.