Main Article Content

Abstract

Background: Lendir kulit ikan baru-baru ini dikenal sebagai sumber potensial peptida antimikrobial yang berfungsi untuk memberikan pertahanan pertama terhadap bakteri patogen, seperi Escherichia coli. Beberapa peptida antimikrobial yang dihasilkan oleh lendir kulit ikan lele kuning (Pelteobagrus fulvidraco) terbukti mampu menghambat Penicillin-Binding Protein 3 (PBP3) pada Escherichia coli, antara lain Pelteobagrin, Myxinidin, Pleurocidin, dan Pardaxin-P1. Metode: Penelitian ini bertujuan untuk melakukan identifikasi, evaluasi, dan eksplorasi terhadap interaksi molekuler antara molekul peptida antimikrobial dengan Penicillin-Binding Protein 3 (PBP3) pada Escherichia coli menggunakan motode penambatan molekuler berbasis protein-peptida. Sekuensing peptida antimikrobial terlebih dahulu dimodelkan ke dalam bentuk konformasi 3D menggunakan server PEP-FOLD. Konformasi terbaik hasil pemodelan dipilih untuk selanjutnya dilakukan studi interaksi terhadap makromolekul Penicillin-Binding Protein 3 (PBP3) pada Escherichia coli menggunakan perangkat lunak PatchDock. Interaksi yang terbentuk kemudian diamati lebih lanjut menggunakan perangkat lunak BIOVIA Discovery Studio 2020. Hasil: Hasil dari penambatan molekuler menunjukkan bahwa peptida Pardaxin-P1 memiliki afinitas paling baik, yaitu dengan ACE score −1402,39 kJ/mol. Kesimpulan: Dengan demikian, peptida antimikrobial tersebut diprediksi dapat dipilih sebagai kandidat antimikroba alami.


 

Keywords

peptida antimikrobial penicillin-binding protein 3 (PBP) Escherichia coli ikan lele kuning in silico

Article Details

How to Cite
Fakih, T. M., & Dewi, M. L. (2020). Interaksi Molekuler Peptida Antimikrobial Lendir Kulit Ikan Lele Kuning (Pelteobagrus fulvidraco) terhadap Penicillin-Binding Protein 3 (PBP3) pada Escherichia coli secara In silico. BIOEDUSCIENCE, 4(1), 48-55. https://doi.org/10.29405/j.bes/4148-554951

References

  1. Agrawal, P., Singh, H., Srivastava, H. K., Singh, S., Kishore, G., & Raghava, G. P. S. (2019). Benchmarking of different molecular docking methods for protein-peptide docking. BMC Bioinformatics. https://doi.org/10.1186/s12859-018-2449-y
  2. Ángeles Esteban, M. (2012). An Overview of the Immunological Defenses in Fish Skin. ISRN Immunology. https://doi.org/10.5402/2012/853470
  3. Avci, F. G., Akbulut, B. S., & Ozkirimli, E. (2018). Membrane Active Peptides and Their Biophysical Characterization. Biomolecules, 8(77), 1–43. https://doi.org/10.3390/biom8030077
  4. Bellini, D., Koekemoer, L., Newman, H., & Dowson, C. G. (2019). Novel and Improved Crystal Structures of H. influenzae, E. coli and P. aeruginosa Penicillin-Binding Protein 3 (PBP3) and N. gonorrhoeae PBP2: Toward a Better Understanding of β-Lactam Target-Mediated Resistance. Journal of Molecular Biology, 431(18), 3501–3519. https://doi.org/10.1016/j.jmb.2019.07.010
  5. Brinchmann, M. F., Patel, D. P., Pinto, N., & Iversen, M. H. (2018). Functional Aspects of Fish Mucosal Lectins—Interaction with Non-Self Monica. Molecules, 23(1119), 1–12. https://doi.org/10.3390/molecules23051119
  6. Dash, S., Das, S. K., Samal, J., & Thatoi, H. (2018). Epidermal mucus , a major determinant in fish health : A review. Irianian Journal of Veterinary Research, 19(2), 72–81. https://doi.org/10.22099/ijvr.2018.4849
  7. Gokhale, A. S., & Satyanarayanajois, S. (2014). Peptides and Peptidomimetics As Immunomodulators. Immunotherapy, 6(6), 755–774. https://doi.org/10.2217/IMT.14.37
  8. Hedmon, O., Jacqueline, A., Koffi, K. T., Drago, K. C., & Engeu, O. P. (2018). Fish Mucus: A Neglected Reservoir for Antimicrobial Peptides. Asian Journal of Pharmaceutical Research and Development, 6(4), 6–11. https://doi.org/http://dx.doi.org/10.22270/ajprd.v6.i4.389
  9. Irazazabal, L. N., Porto, W. F., Fensterseifer, I. C. M., Alves, E. S. F., Matos, C. O., Menezes, A. C. S., Felício, M. R., Gonçalves, S., Santos, N. C., Suzana, M., Humblot, V., Lião, L. M., Ladram, A., & Franco, L. (2018). Fast and Potent Bactericidal Membrane Lytic Activity Of Padbs1r1, A Novel Cationic Antimicrobial Peptide. Biochimica et Biophysica Acta - Biomembranes, 186(1), 178–190. https://doi.org/10.1016/j.bbamem.2018.08.001
  10. Lei, J., Sun, L. C., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., Coy, D. H., & He, Q. Y. (2019). The antimicrobial peptides and their potential clinical applications. In American Journal of Translational Research.
  11. Masso-silva, J. A., & Diamond, G. (2014). Antimicrobial Peptides from Fish. Pharmaceuticals, 7(3), 265–310. https://doi.org/10.3390/ph7030265
  12. Ozboyaci, M., Kokh, D. B., Corni, S., & Wade, R. C. (2016). Modeling and simulation of protein-surface interactions: Achievements and challenges. In Quarterly Reviews of Biophysics. https://doi.org/10.1017/S0033583515000256
  13. Papp, T., & Marschang, R. E. (2019). Detection and Characterization of Invertebrate Iridoviruses Found in Reptiles and Prey Insects in Europe over the Past Two Decades. Viruses, 11(600), 1–25.
  14. Patil, B. S., Krishnamurthy, G., Lokesh, M. R., Shashikumar, N. D., Bhojya Naik, H. S., Latthe, P. R., & Ghate, M. (2013). Synthesis of some novel 1,2,4-triazole and 1,3,4-oxadiazole derivatives of biological interest. Medicinal Chemistry Research. https://doi.org/10.1007/s00044-012-0332-3
  15. Pushpanathan, M., Gunasekaran, P., & Rajendhran, J. (2013). Antimicrobial peptides: Versatile biological properties. International Journal of Peptides. https://doi.org/10.1155/2013/675391
  16. Rakers, S., Niklasson, L., Steinhagen, D., Kruse, C., Sundell, K., & Paus, R. (2013). Antimicrobial Peptides ( AMPs ) from Fish Epidermis : Perspectives for Investigative Dermatology. Journal of Investigative Dermatology, 133(5), 1140–1149. https://doi.org/10.1038/jid.2012.503
  17. Reverter, M., Tapissier-bontemps, N., Lecchini, D., Banaigs, B., & Sasal, P. (2018). Biological and Ecological Roles of External Fish Mucus : A Review. Fishes, 3(41), 1–19. https://doi.org/10.3390/fishes3040041
  18. Rizvi, S. M. D., Shakil, S., & Haneef, M. (2013). A simple click by click protocol to perform docking: Autodock 4.2 made easy for non-bioinformaticians. EXCLI Journal. https://doi.org/10.17877/DE290R-11534
  19. Senthilkumar, B., Meshachpaul, D., & Rajasekaran, R. (2016). Geometric Simulation Approach for Grading and Assessing the Thermostability of CALBs. Biochemistry Research International. https://doi.org/10.1155/2016/4101059
  20. Sharma, S., Kumar, P., Chandra, R., Singh, S. P., Mandal, A., & Dondapati, R. S. (2019). Overview of BIOVIA materials studio, LAMMPS, and GROMACS. In Molecular Dynamics Simulation of Nanocomposites using BIOVIA Materials Studio, Lammps and Gromacs. https://doi.org/10.1016/B978-0-12-816954-4.00002-4
  21. Shen, Y., Maupetit, J., Derreumaux, P., & Tuffery, P. (2014). Improved PEP-FOLD Approach for Peptide and Miniprotein Structure Prediction. Journal of Chemical Theory and Computation, 10, 4745–4758. https://doi.org/dx.doi.org/10.1021/ct500592m
  22. Stöhr, A. C., Papp, T., & Marschang, R. E. (2016). Repeated Detection of an Invertebrate Iridovirus in Amphibians. Journal of Herpetological Medicine and Surgery. https://doi.org/10.5818/1529-9651-26.1-2.54
  23. Su, Y. (2011). Isolation and identification of pelteobagrin, a novel antimicrobial peptide from the skin mucus of yellow catfish (Pelteobagrus fulvidraco). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology. https://doi.org/10.1016/j.cbpb.2010.11.002
  24. Thevenet, P., Shen, Y., Maupetit, J., Guyon, F., Derreumaux, P., & Tuffery, P. (2012). PEP-FOLD : an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Research, 40, 288–293. https://doi.org/10.1093/nar/gks419