Molecular Characteristics of Geoffroy's Rousette Rousettus amplexicaudatus Based on Cytochrome C Oxidase Subunit I and Cytochrome b Genes
Abstract
Background: Rousettus amplexicaudatus is widely distributed across Indonesia, including the Suruman Cave in South Bengkulu. Due to similarities in morphology within the Rousettus group, identification can be challenging. We conducted a molecular analysis using COI and Cytochrome b genes from mitochondrial DNA to explore its genetic traits. DNA was extracted from the blood tissue of seven individuals from the Suruman Cave population, and gene amplification was performed with 20 bp primers. Sequence data were analyzed using MEGA XI software. Results: As a result, characteristics of the COI gene, which is 897 bp in length, were characterized by a high frequency of base pairs Adenine-Thymine (55.5%) and Guanine-Cytosine (44.5%), with the majority of the DNA sequence exhibiting a high degree of conservation sites (97.8%). The average intrapopulation genetic distance based on the COI gene was 0.77%, with four specific sites for R. amplexicaudatus Suruman Cave. The Cytochrome b gene, which is 635 bp long, is characterized by Adenine-Thymine base pairs of 53.7% and Guanine-Cytosine of 46.3%. Cytochrome b is more conserved than the COI (99.1%). The average intrapopulation genetic distance based on the Cytochrome b gene is 0.3% and has no population-specific sites. Conclusions: Both sequences showed a consistent pattern in phylogenetic tree analysis, which suggests the Suruman population is the group of R. amplexicaudatus. Therefore, these sequences can be proposed as molecular markers for R. amplexicaudatus, particularly when compared to the whole sequences of the COI and cytochrome b.
Full text article
References
Ancillotto, L., Bosso, L., Smeraldo, S., Mori, E., Mazza, G., Herkt, M., Galimberti, A., Ramazzotti, F., & Russo, D. (2020). An African bat in Europe, Plecotus gaisleri: Biogeographic and ecological insights from molecular taxonomy and Species Distribution Models. Ecology and Evolution, 10(12), 5785–5800. https://doi.org/10.1002/ece3.6317
Calahorra-Oliart, A., Ospina-Garcés, S. M., & León-Paniagua, L. (2021). Cryptic species in Glossophaga soricina (Chiroptera: Phyllostomidae): do morphological data support molecular evidence? Journal of Mammalogy, 102(1), 54–68. https://doi.org/10.1093/jmammal/gyaa116
Carpenter, E. S., Gomez, R., Waldien, D. L., & Sherwin, R. E. (2014). Photographic estimation of roosting density of Geoffroy ’ 's Rousette Fruit Bat Rousettus amplexicaudatus (Chiroptera : Pteropodidae) at Monfort Bat Cave, Philippines. Journal of Threatened Taxa, 6(6), 5838–5844. http://dx.doi.org/10.11609/JoTT.o3522.5838-44
Ceballos, G. (2014). Mammals of Mexico. Johns Hopkins University Press. https://doi.org/https://books.google.co.id/books?hl=id&lr=&id=UrvxBQAAQBAJ&oi=fnd&pg=PP1&ots=nhNgNv-x9A&sig=4G5qJ3EfjhoYuakDXU2SQPGdQKc&redir_esc=y#v=onepage&q&f=false
Cruz-Salazar, B., Ruiz-Montoya, L., Mendoza-Sáenz, V. H., Riechers-Pérez, A., & García-Bautista, M. (2018). Genetic diversity of tropical bats and its relationship with ecological role in a tropical semievergreen rain forest in EL ocote biosphere reserve, Chiapas, Mexico. Tropical Conservation Science, 11. https://doi.org/10.1177/1940082917752473
Demos, T. C., Webala, P. W., Peterhans, J. C. K., Goodman, S. M., Bartonjo, M., & Patterson, B. D. (2019). Molecular Phylogenetics of Slit-Faced Bats (Chiroptera: Nycteridae) Reveal Deeply Divergent African Lineages. Journal of Zoological Systematics and Evolutionary Research, 57(4), 1019–1038. https://doi.org/10.1111/jzs.12313
Ding, Y., Chen, W., & Mao, X. (2021). The Complete Mitochondrial Genome of Rhinolophus affinis himalayanus. Mitochondrial DNA Part B, 6(1), 164–165. https://doi.org/10.1080/23802359.2020.1856011
Festa, F., Ancillotto, L., Santini, L., Pacifici, M., Rocha, R., Toshkova, N., Amorim, F., Benítez-López, A., Domer, A., Hamidović, D., Kramer-Schadt, S., Mathews, F., Radchuk, V., Rebelo, H., Ruczynski, I., Solem, E., Tsoar, A., Russo, D., & Razgour, O. (2023). Bat responses to climate change: a systematic review. Biological Reviews, 98(1), 19–33. https://doi.org/10.1111/brv.12893
Francis, C. (2019). Field guide to the mammals of Southeast Asia (2nd ed.). Bloomsbury Publishing.
Frick, W. F., Kingston, T., & Flanders, J. (2020). A Review of the Major Threats and Challenges to Global Bat Conservation. Annals of the New York Academy of Sciences, 1469(1), 5–25. https://doi.org/10.1111/nyas.14045
Hassanin, A., Bonillo, C., Tshikung, D., Pongombo Shongo, C., Pourrut, X., Kadjo, B., Nakouné, E., Tu, V. T., Prié, V., & Goodman, S. M. (2020). Phylogeny of African fruit bats (Chiroptera, Pteropodidae) based on complete mitochondrial genomes. Journal of Zoological Systematics and Evolutionary Research, 58(4), 1395–1410. https://doi.org/10.1111/jzs.12373
Hebert, P. D. N., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003). Biological Identifications Through DNA Barcodes. Proceedings of the Royal Society B: Biological Sciences, 270(1512), 313–321. https://doi.org/10.1098/rspb.2002.2218
Huang, C., Yu, W., Xu, Z., Qiu, Y., Chen, M., Qiu, B., Motokawa, M., Harada, M., Li, Y., & Wu, Y. (2014). A Cryptic Species of the Tylonycteris pachypus Complex (Chiroptera: Vespertilionidae) and Its Population Genetic Structure in Southern China and Nearby Regions. International Journal of Biological Sciences, 10(2), 200–211. https://doi.org/10.7150/ijbs.7301
IUCN. (2021). IUCN Red List for Chiroptera. IUCN. https://doi.org/https://www.iucnredlist.org/search/list?taxonomies=100265&searchType=species
Jahari, P. N. S., Azman, S. M., Munian, K., Fauzi, N. F. M., Shamsir, M. S., Richter, S. R., & Salleh, F. M. (2020). The First Complete Mitochondrial Genome Data of Geoffroy’s Rousette, Rousettus amplexicaudatus Originating From Malaysia. Mitochondrial DNA Part B: Resources, 5(3), 3280–3282. https://doi.org/10.1080/23802359.2020.1812449
Juste, J., Ruedi, M., Puechmaille, S. J., Salicini, I., & Ibáñez, C. (2018). Two New Cryptic Bat Species within the Myotis nattereri Species Complex (Vespertilionidae, Chiroptera) from the Western Palaearctic. Acta Chiropterologica, 20(2), 285–300. https://doi.org/10.3161/15081109ACC2018.20.2.001
Kamilah, S. N., Manaf, S., Darwis, W., Duya, N., Harmolis, D., & Meriana. (2019). Perilaku Pemilihan Lokasi Roosting Site Pada Kelelawar di Gua Suruman Bengkulu Selatan. Prosiding Semirata BKS PTN Wilayah Barat Bidang MIPA, 830–835. https://doi.org/10.5281/zenodo.6832566
Karamat, S., Ashraf, N., Akhtar, T., Rahim, F., Shafi, N., Khalid, S., Shahid, B., Khawaja, S., Rahim, J., Majeed, Z., Z., L., & Menmood, M. (2021). CO1-based DNA barcoding for assessing diversity of Pteropus giganteus from the State of Azad Jammu Kashmir, Pakistan. Braz. J. Biol., 81(3), 584–591. https://doi.org/10.1590/1519-6984.226466
Kemp, J., López-Baucells, A., Rocha, R., Wangensteen, O. S., Andriatafika, Z., Nair, A., & Cabeza, M. (2019). Bats as potential suppressors of multiple agricultural pests: A case study from Madagascar. Agriculture, Ecosystems and Environment, 269, 88–96. https://doi.org/10.1016/j.agee.2018.09.027
KLHK-LIPI. (2019). Panduan Identifikasi Jenis Satwa Liar di Lindungi; Mamalia. KLHK-LIPI. https://doi.org/http://ksdae.menlhk.go.id/assets/publikasi/BUKU PANDUAN IDENTIFIKASI MAMALIA DILINDUNGI_020819.pdf
Ladoukakis, E. D., & Zouros, E. (2017). Evolution and inheritance of animal mitochondrial DNA: Rules and exceptions. Journal of Biological Research (Greece), 24(1), 1–7. https://doi.org/10.1186/s40709-017-0060-4
Laurindo, R. S., Novaes, R. L. M., Vizentin-Bugoni, J., & Gregorin, R. (2019). The effects of habitat loss on bat-fruit networks. Biodiversity and Conservation, 28(3), 589–601. https://doi.org/10.1007/s10531-018-1676-x
Lengkong, H. J., Arisoesilaningsih, E., Hakim, L., & Sudarto. (2016). Morphological Variations and New Species Description of Genus Rousettus Bat from Gunung Duasudara Sanctuary, North Sulawesi, Indonesia. OnLine Journal of Biological Sciences, 16(2), 90–101. https://doi.org/10.3844/ojbsci.2016.90.101
Lopez-Oceja, A., Gamarra, D., Borragan, S., Jiménez-Moreno, S., & De Pancorbo, M. M. (2016). A new cyt b gene universal primer is set for forensic analysis. Forensic Science International: Genetics, 23, 159–165. https://doi.org/10.1016/j.fsigen.2016.05.001
Luczon, A. U., Ampo, S. A. M. M., Roño, J. G. A., Duya, M. R. M., Ong, P. S., & Fontanilla, I. K. C. (2019). DNA barcodes reveal high genetic diversity in Philippine fruit bats. Philippine Journal of Science, 148(Special Issue 1), 133–152. https://doi.org/DOI: 10.1016/j.fsigen.2016.05.001
Lukman. (2022). Pemanfaatan Pupuk Guano dalam Sistem Pertanian Berkelanjutan dan Dampaknya pada Pertumbuhan dan Hasil Tanaman Jagung Manis (Zea mays saccharata L). Jurnal Ilmu Pertanian Indonesia, 27(4), 590–595. https://doi.org/10.18343/jipi.27.4.590
Luo, P. F., Wang, W. F., Wang, X. L., Wang, Y. L., Wang, S. W., Yan, S. S., He, Q. Q., & Zhou, J. (2022). The complete mitochondrial genome of the Great evening bat Ia io (Chiroptera: Vespertiilionidae) from karst area, Southwestern China. Mitochondrial DNA Part B: Resources, 7(4), 587–589. https://doi.org/10.1080/23802359.2022.2057247
Maryanto, I., Maharadatunkamsi, Achmadi, A. S., Wiantoro, S., Sulistyadi, E., Yoneda, M., Suyanto, A., & Sugardjito, J. (2019). Checklist of the Mammals of Indonesia (Third Edit). LIPI Press. Bogor. https://doi.org/https://www.researchgate.net/publication/338687953_CHECKLIST_OF_THE_MAMMALS_OF_INDONESIA_Scientific_English_Indonesia_Name_and_Distribution_Area_Table_in_Indonesia_Including_CITES_IUCN_and_Indonesian_Category_for_Conservation
Medellin, R. A., Wiederholt, R., & Lopez-Hoffman, L. (2017). Conservation relevance of bat caves for biodiversity and ecosystem services. Biological Conservation, 211(Part B), 45–50. https://doi.org/10.1016/j.biocon.2017.01.012
Mendoza, R. V. D., & Fontanilla, I. K. C. (2019). Whole Mitochondrial Genome of a Geoffroy’s Rousette, Rousettus amplexicaudatus (Pteropodidae). Mitochondrial DNA Part B, 4(2), 3546–3548. https://doi.org/10.1080/23802359.2019.1676671
Mulvaney, J., Moir, M., & Cherry, M. I. (2023). DNA barcoding reveals cryptic diversification and taxonomic discordance among bats and birds within Sub-Saharan Africa. Biodiversity and Conservation, 32(14), 4895–4914. https://doi.org/10.1007/s10531-023-02737-1
Park, S., Noh, P., Choi, Y. S., Joo, S., Jeong, G., & Kim, S. S. (2019). Population genetic structure based on mitochondrial DNA analysis of Ikonnikov’s whiskered bat (Myotis ikonnikovi - Chiroptera: Vespertilionidae) from Korea. Journal of Ecology and Environment, 43(1), 1–8. https://doi.org/10.1186/s41610-019-0140-5
Payne, J., Francis, C. M., Philipps, K., & Kartikasari, S. N. (2000). Panduan Lapangan Mamalia di Kalimantan, Sabah, Serawak, dan Brunai Darussalam. The Sabah Society dan WWF. Kuala Lumpur.
Peixoto, F. P., Braga, P. H. P., & Mendes, P. (2018). A synthesis of ecological and evolutionary determinants of bat diversity across spatial scales. BMC Ecology, 18(1), 1–14. https://doi.org/10.1186/s12898-018-0174-z
Ramírez-Fráncel LA, García-Herrera LV, Losada-Prado S, Reinoso-Flórez G, Sánchez-Hernández, A, Estrada-Villegas, S, Lim BK, G. G. (2022). Bats and their vital ecosystem services: a global review. Integrative Zoology, 17(1), 2–23. https://doi.org/10.1111/1749-4877.12552
Soltis, P. S., & Soltis, D. E. (2003). Applying the Bootstrap in Phylogeny Reconstruction. Statistical Science, 18(2), 256–267. https://doi.org/10.1214/ss/1063994980
Soto-Centeno, J. A., & Simmons, N. B. (2022). Environmentally driven phenotypic convergence and niche conservatism accompany speciation in hoary bats. Scientific Reports, 12(1), 1–13. https://doi.org/10.1038/s41598-022-26453-y
Srinivasulu, C., Srinivasulu, A., Srinivasulu, B., & Jones, G. (2019). Integrated approaches to identifying cryptic bat species in areas of high endemism: The case of Rhinolophus andamanensis in the Andaman Islands. PLoS ONE, 14(10), 1–15. https://doi.org/10.1371/journal.pone.0213562
Stribna, T., Romportl, D., Demjanovič, J., Vogeler, A., Tschapka, M., Benda, P., Horáček, I., Juste, J., Goodman, S. M., & Hulva, P. (2019). Pan African phylogeography and palaeodistribution of rousettine fruit bats: Ecogeographic correlation with Pleistocene climate vegetation cycles. Journal of Biogeography, 46(10), 2336–2349. https://doi.org/10.1111/jbi.13651
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120
Tangguda, S., Valentine, R. T., Hariyadi, D. R., & Sudiarsa, I. N. (2022). Pemanfaatan Kotoran Kelelawar sebagai Pupuk Guano di Desa Bolok, Kupang Barat, Nusa Tenggara Timur. Agrikultura, 33(3), 289–295. https://doi.org/10.24198/agrikultura.v33i3.40690
Thanh, H. T., Son, N. T., Duong, V. T., Luong, N. T., Loi, D. N., & Thong, V. D. (2019). New Records and Morphological Assessments of Long-Nosed Fruit Bats (Chiroptera: Pteropodidae: Macroglossus spp.) from Vietnam. Tap Chi Sinh Hoc, 41(4), 117–124. https://doi.org/10.15625/0866-7160/v41n4.14695
Tu, V. T., Csorba, G., Ruedi, M., Furey, N. M., Son, N. T., Thong, V. D., Bonillo, C., & Hassanin, A. (2017). Comparative Phylogeography of Bamboo Bats of the Genus Tylonycteris (Chiroptera, Vespertilionidae) in Southeast Asia. European Journal of Taxonomy, 2017(274), 1–38. https://doi.org/10.5852/ejt.2017.274
Waldien, D. L., Wilson, Z., Adleson, S., Aziz, A. S., Bates, P. J. J., Bumrungsri, S., Furey, N., Ingle, N. R., Mildenstein, T., Phelps, K., Tanalgo, K., Soisook, P., Thong, V. D., Wiantoro, S., & Tsang, S. M. (2019). Rousettus amplexicaudatus. In The IUCN Red List of Threatened Species 2019: e.T19754A22001514. http://dx.doi.org/10.2305/IUCN.UK.2019- 3.RLTS.T19754A22001514.en
Wang, J., Zhao, A., & Sun, H. (2020). The Complete Mitochondrial Genome of the Least Horseshoe Bat (Rhinolophus pusillus). Mitochondrial DNA Part B, 5(1), 881–882. https://doi.org/10.1080/23802359.2020.1717389
Wilson, D. E., & Mittermeier, R. A. (2019). Handbook of the Mammals of the World Volume 9 - Bats. Lynx Edicions. https://doi.org/ 10.5281/zenodo.6448815
Wright, P. G. R., Hamilton, P. B., Schofield, H., Glover, A., Damant, C., Davidson-Watts, I., & Mathews, F. (2018). Genetic structure and diversity of a rare woodland bat, Myotis bechsteinii: comparison of continental Europe and Britain. Conservation Genetics, 19(4), 777–787. https://doi.org/10.1007/s10592-018-1053-z
Yoon, K. B., Kim, J. Y., & Park, Y. C. (2016). Characteristics of Complete Mitogenome of the Lesser Short-Nosed Fruit Bat Cynopterus brachyotis (Chiroptera: Pteropodidae) in Malaysia. Mitochondrial DNA Part A Resources, 27(3), 2091–2092. https://doi.org/10.3109/19401736.2014.982571
Yue, Y., Huang, Z., Li, F., Thapa, S., Hu, Y., Wu, Y., & Yu, W. (2019). In China, the complete mitochondrial genome of the tube-nosed bat Murina cyclotis (Chiroptera: Vespertilionidae). Mitochondrial DNA Part B: Resources, 4(2), 2248–2250. https://doi.org/10.1080/23802359.2019.1623125
Zaharias, P., Lemoine, F., & Gascuel, O. (2023). Robustness of Felsenstein’s Versus Transfer Bootstrap Supports With Respect to Taxon Sampling. Systematic Biology, 72(6), 1280–1295. https://doi.org/10.1093/sysbio/syad052
Zhang, L., Sun, K., Csorba, G., Hughes, A. C., Jin, L., Xiao, Y., & Feng, J. (2021). Complete Mitochondrial Genomes Reveal Robust Phylogenetic Signals and Evidence of Positive Selection in Horseshoe Bats. BMC Ecology and Evolution, 21(199), 1–15. https://doi.org/10.1186/s12862-021-01926-2
Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.