Exopolysaccharides production by Lactobacillus fermentum under different growth conditions in coconut water medium
Abstract
Background: Exopolysaccharides (EPS) production gain a lot of attention over recent decades, because EPS can provide beneficial effects, not only on the industrial application but also on the health sector. The understanding of the optimal condition for EPS production will increase the productivity of EPS and can develop EPS with desirable properties. The factors affected EPS production are additional of sugar concentration, temperature, fermentation time, and others. The current work aimed to optimize the utilization of a byproduct leftover of coconut water on the EPS production from Lactobacillus fermentum. Methods: The EPS synthesis were analyzed under various growth conditions in coconut water such as additional of sucrose concentration and incubation times. EPS production of Lactobacillus fermentum was performed by adding 1%, 2%, and 3% of sucrose and 12, 24, 36, and 48 h of incubation periods. The obtained data were analyzed statistically using a two-ways ANOVA test. Results: The EPS production increased as the sucrose concentration and incubation time were increased. The optimal production was found to be in the media supplemented with 3% sucrose and 48 h of incubation period, which gave 12.613 g/L of EPS production. Conclusions: Media of coconut water is suitable for EPS production by Lactobacillus fermentum. Under 3% of additional sucrose concentration and 48 h of incubation time, it produced a larger number of EPS compare to other conditions.
Full text article
References
Ananta, E., Volkert, M., & Knorr, D. (2005). Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. International Dairy Journal, 15(4), 399–409. https://doi.org/10.1016/j.idairyj.2004.08.004
Andriani, V. (2020). Sari Rebung Bambu Duri (Bambusa blumeana) Sebagai Fitohormon Giberelin Terhadap Pertumbuhan Dan Produksi Tanaman Cabai Rawit (Capsicum frutescents L.). Quagga: Jurnal Pendidikan Dan Biologi, 12(1), 57. https://doi.org/10.25134/quagga.v12i1.2185
Cerning, J., Bouillanne, C., Landon, M., & Desmazeaud, M. (1992). Isolation and Characterization of Exopolysaccharides from Slime-Forming Mesophilic Lactic Acid Bacteria. Journal of Dairy Science, 75(3), 692–699. https://doi.org/10.3168/jds.S0022-0302(92)77805-9
Cerning, J., Renard, C. M. G. C., Thibault, J. F., Bouillanne, C., Landon, M., Desmazeaud, M., & Topisirovic, L. (1994). Carbon Source Requirements for Exopolysaccharide Production by Lactobacillus casei CG11 and Partial Structure Analysis of the Polymer. Applied and Environmental Microbiology, 60(11), 3914–3919. https://doi.org/10.1128/aem.60.11.3914-3919.1994
Chug, R., Mathur, S., Kothari, S. L., Harish, & Gour, V. S. (2021). Maximizing EPS production from Pseudomonas aeruginosa and its application in Cr and Ni sequestration. Biochemistry and Biophysics Reports, 26, 100972. https://doi.org/10.1016/j.bbrep.2021.100972
Cirrincione, S., Breuer, Y., Mangiapane, E., Mazzoli, R., & Pessione, E. (2018). “Ropy” phenotype, exopolysaccharides and metabolism: Study on food isolated potential probiotics LAB. Microbiological Research, 214, 137–145. https://doi.org/10.1016/j.micres.2018.07.004
Dhanya Raj, C. T., Suryavanshi, M. V., Kandaswamy, S., Ramasamy, K. P., & James, R. A. (2023). Whole genome sequence analysis and in-vitro probiotic characterization of Bacillus velezensis FCW2 MCC4686 from spontaneously fermented coconut water. Genomics, 115(4), 110637. https://doi.org/10.1016/j.ygeno.2023.110637
Doleyres, Y., Schaub, L., & Lacroix, C. (2005). Comparison of the Functionality of Exopolysaccharides Produced In Situ or Added as Bioingredients on Yogurt Properties. Journal of Dairy Science, 88(12), 4146–4156. https://doi.org/10.3168/jds.S0022-0302(05)73100-3
El-Waseif, A. A., Haroun, B. M., El-Menoufy, H. A., & Amin, H. A. (2013). Biosynthesis and Morphology of an Exopolysaccharide from a Probiotic Lactobacillus plantarum under different growth conditions. In Journal of Applied Sciences Research (Vol. 9, Issue 2).
Gamar, L., Blondeau, K., & Simonet, J. ‐M. (1997). Physiological approach to extracellular polysaccharide production by Lactobacillus rhamnosus strain C83. Journal of Applied Microbiology, 83(3), 281–287. https://doi.org/10.1046/j.1365-2672.1997.00228.x
Helal, M., Hussein, M.-D., Osman, M., Shalaby, A. S., & Ghaly, M. (2015). Production and prebiotic activity of exopolysaccharides derived from some probiotics. Egyptian Pharmaceutical Journal, 14(1), 1. https://doi.org/10.4103/1687-4315.154687
Hereher, F., ElFallal, A., Abou-Dobara, M., Toson, E., & Abdelaziz, M. M. (2018). Cultural optimization of a new exopolysaccharide producer, “Micrococcus roseus.” Beni-Suef University Journal of Basic and Applied Sciences, 7(4), 632–639. https://doi.org/10.1016/j.bjbas.2018.07.007
Hu, X., Li, F., Zhang, X., Pan, Y., Lu, J., Li, Y., & Bao, M. (2022). The structure, characterization, and dual-activity of exopolysaccharide produced by Bacillus enclensis AP-4 from deep-sea sediments. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.976543
Kawanabe-Matsuda, H., Takeda, K., Nakamura, M., Makino, S., Karasaki, T., Kakimi, K., Nishimukai, M., Ohno, T., Omi, J., Kano, K., Uwamizu, A., Yagita, H., Boneca, I. G., Eberl, G., Aoki, J., Smyth, M. J., & Okumura, K. (2022). Dietary Lactobacillus-Derived Exopolysaccharide Enhances Immune-Checkpoint Blockade Therapy. Cancer Discovery, 12(5), 1336–1355. https://doi.org/10.1158/2159-8290.CD-21-0929
Korakli, M., Pavlovic, M., Gänzle, M. G., & Vogel, R. F. (2003). Exopolysaccharide and Kestose Production by Lactobacillus sanfranciscensis LTH2590. Applied and Environmental Microbiology, 69(4), 2073–2079. https://doi.org/10.1128/AEM.69.4.2073-2079.2003
Kumar, P., & Dey, M. M. (2007). Long-Term Changes in Indian Food Basket and Nutrition. Economic and Political Weekly, 42(35), 3567–3572. https://doi.org/10.2307/40276502
Manochai, P., Phimolsiripol, Y., & Seesuriyachan, P. (2014). Response Surface Optimization of Exopolysaccharide Production from Sugarcane Juice by Lactobacillus confusus TISTR 1498. Chiang Mai University Journal of Natural Sciences, 13(1). https://doi.org/10.12982/CMUJNS.2014.0046
Mbye, M., Baig, M. A., AbuQamar, S. F., El‐Tarabily, K. A., Obaid, R. S., Osaili, T. M., Al‐Nabulsi, A. A., Turner, M. S., Shah, N. P., & Ayyash, M. M. (2020). Updates on understanding of probiotic lactic acid bacteria responses to environmental stresses and highlights on proteomic analyses. Comprehensive Reviews in Food Science and Food Safety, 19(3), 1110–1124. https://doi.org/10.1111/1541-4337.12554
Mekhici, B. K., Touil Meddah, T. A., & Boumédiene, M. (2017). Optimization of Production of Microbial Exopolysaccharides (EPS) with Essential Oils from Two Medicinal Plants. Journal of Applied Biosciences, 111, 10925–10933. http://dx.doi.org/104314/jab.v111i1.9
Mıdık, F., Tokatlı, M., Bağder Elmacı, S., & Özçelik, F. (2020). Influence of different culture conditions on exopolysaccharide production by indigenous lactic acid bacteria isolated from pickles. Archives of Microbiology, 202(4), 875–885. https://doi.org/10.1007/s00203-019-01799-6
Nguyen, H.-T., Truong, D.-H., Kouhoundé, S., Ly, S., Razafindralambo, H., & Delvigne, F. (2016). Biochemical Engineering Approaches for Increasing Viability and Functionality of Probiotic Bacteria. International Journal of Molecular Sciences, 17(6), 867. https://doi.org/10.3390/ijms17060867
Nguyen, P.-T., Nguyen, T.-T., Bui, D.-C., Hong, P.-T., Hoang, Q.-K., & Nguyen, H.-T. (2020). Exopolysaccharide production by lactic acid bacteria: the manipulation of environmental stresses for industrial applications. AIMS Microbiology, 6(4), 451–469. https://doi.org/10.3934/microbiol.2020027
Ninomiya, K., Matsuda, K., Kawahata, T., Kanaya, T., Kohno, M., Katakura, Y., Asada, M., & Shioya, S. (2009). Effect of CO2 concentration on the growth and exopolysaccharide production of Bifidobacterium longum cultivated under anaerobic conditions. Journal of Bioscience and Bioengineering, 107(5), 535–537. https://doi.org/10.1016/j.jbiosc.2008.12.015
Nwodo, U., Green, E., & Okoh, A. (2012). Bacterial Exopolysaccharides: Functionality and Prospects. International Journal of Molecular Sciences, 13(12), 14002–14015. https://doi.org/10.3390/ijms131114002
Pham, P. L., Dupont, I., Roy, D., Lapointe, G., & Cerning, J. (2000). Production of Exopolysaccharide by Lactobacillus rhamnosus R and Analysis of Its Enzymatic Degradation during Prolonged Fermentation. In APPLIED AND ENVIRONMENTAL MICROBIOLOGY (Vol. 66, Issue 6). https://doi.org/10.1128/aem.66.6.2302-2310.2000
Phillips, K. N., Godwin, C. M., & Cotner, J. B. (2017). The Effects of Nutrient Imbalances and Temperature on the Biomass Stoichiometry of Freshwater Bacteria. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01692
Sanhueza, E., Paredes-Osses, E., González, C. L., & García, A. (2015). Effect of pH in the survival of Lactobacillus salivarius strain UCO 979C wild type and the pH acid acclimated variant. Electronic Journal of Biotechnology, 18(5), 343–346. https://doi.org/10.1016/j.ejbt.2015.06.005
Seesuriyachan, P., Kuntiya, A., Hanmoungjai, P., Techapun, C., Chaiyaso, T., & Leksawasdi, N. (2012). Optimization of Exopolysaccharide Overproduction by Lactobacillus confusus in Solid State Fermentation under High Salinity Stress. Bioscience, Biotechnology, and Biochemistry, 76(5), 912–917. https://doi.org/10.1271/bbb.110905
Shivakumar, S., & Vijayendra, S. V. N. (2006). Production of exopolysaccharides by Agrobacterium sp. CFR-24 using coconut water - a byproduct of the food industry. Letters in Applied Microbiology, 42(5), 477–482. https://doi.org/10.1111/j.1472-765X.2006.01881.x
Wei, G., Dai, X., Zhao, B., Li, Z., Tao, J., Wang, T., & Huang, A. (2023). Structure-activity relationship of exopolysaccharides produced by Limosilactobacillus fermentum A51 and the mechanism contributing to the textural properties of yogurt. Food Hydrocolloids, 144, 108993. https://doi.org/10.1016/j.foodhyd.2023.108993
Widhorini, Arip, A. G., & Wulandari, A. (2021). The use of coconut water (Cocos nucifera l.) as alternative media to substitute Sabouraud Dextrose Agar (SDA) for the growth of aspergillus flavus. IOP Conference Series: Earth and Environmental Science, 819(1), 012061. https://doi.org/10.1088/1755-1315/819/1/012061
Yang, Y., Jiang, G., & Tian, Y. (2023). Biological activities and applications of exopolysaccharides produced by lactic acid bacteria: a mini-review. World Journal of Microbiology and Biotechnology, 39(6), 155. https://doi.org/10.1007/s11274-023-03610-7
Yuksekdag, Z. N., & Aslim, B. (2008). Influence of different carbon sources on exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus (B3, G12) and Streptococcus thermophilus (W22). Brazilian Archives of Biology and Technology, 51(3), 581–585. https://doi.org/10.1590/S1516-89132008000300019
Zhang, J., Liu, L., Ren, Y., & Chen, F. (2019). Characterization of exopolysaccharides produced by microalgae with antitumor activity on human colon cancer cells. International Journal of Biological Macromolecules, 128, 761–767. https://doi.org/10.1016/j.ijbiomac.2019.02.009
Zhang, R., Zhou, Z., Ma, Y., Du, K., Sun, M., Zhang, H., Tu, H., Jiang, X., Lu, J., Tu, L., Niu, Y., & Chen, P. (2023). Production of the exopolysaccharide from Lactiplantibacillus plantarum YT013 under different growth conditions: optimum parameters and mathematical analysis. International Journal of Food Properties, 26(1), 1941–1952. https://doi.org/10.1080/10942912.2023.2239518
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.