Study of Gamma Ray Irradiation Effect on Red Ginger (Zingiber officinal roscoe) 70% Ethanol Extract Level Markers and Its Anti-Inflammatory Activity
Abstract
Background: In Indonesia, the use of herbal plants in overcoming several health problems shows a fairly high rate. Red ginger is one of the herbs that is widely consumed and empirically has the property of relieving or reducing inflammation. However, as is well known, in general the microbiological contamination of herbs is quite high. To maintain the quality of herbal plants, special treatment is required, to ensure that microbial contamination is within safe limits. This study aims to determine the effect of gamma irradiation on the number of microbial contamination, and the bioactive content of 6,8,10-gingerol; 6-shogaol in 70% ethanol extract of red ginger, and its activity as an anti-inflammatory.
Methodes: Samples of 70% ethanol extract of red ginger were irradiated with various doses of 0, 5, 7.5, 10 and 15 KGy. Microbiological contamination is determined in Total Plate Number and Yeast Mold Number. The content of compounds 6,8,10-gingerol and 6-shogaol was observed by high performance liquid method and their anti-inflammatory activity was observed by protein denaturation inhibition (BSA) method. Results: Gamma irradiation at doses of 0, 5, 7.5, 10 and 15 KGy reduced microbial contamination as the exposure dose increased, and did not affect the levels of bioactive 6,8,10-gingerol; 6-shogaol and its anti-inflammatory activity. The anti-inflammatory activity of 70% ethanol extract of red ginger is influenced by the content of bioactive compounds.
Conclusion: Gamma irradiation is effective for decontaminating microbiological contaminants, and improving the quality of red ginger, and does not affect the bioactive levels contained and its anti-inflammatory activity (in vivo).
Full text article
References
Abdeldaiem, M. H. (2009). Evaluation of Antimicrobial Activity of Ginger (Zingiber officinale) Essential Oil Treated by Gamma Radiation. Arab Journal of Nuclear Sciences and Applications; ISSN 1110-0451; ; CODEN AJNADV; v. 42(3); p. 269-276, I, 22.
Alhakmani, F., Kumar, S., & Khan, S. A. (2013). Estimation of total phenolic content, in-vitro antioxidant and anti-inflammatory activity of flowers of Moringa oleifera. Asian Pacific Journal of Tropical Biomedicine, 3(8), 623–627. https://doi.org/10.1016/S2221-1691(13)60126-4
Ambriz-Pérez, D. L., Leyva-López, N., Gutierrez-Grijalva, E. P., & Heredia, J. B. (2016). Phenolic compounds: Natural alternative in inflammation treatment. A Review. Cogent Food and Agriculture, 2(1). https://doi.org/10.1080/23311932.2015.1131412
Andrews, L. S., Cadwallader, K. R., Grodner, R. M., & Chung, H. Y. (1995). Chemical and Microbial Quality of Irradiated Ground Ginger. Journal of Food Science, 60(4), 829–832. https://doi.org/10.1111/j.1365-2621.1995.tb06240.x
Arya, B. D., & Malik, N. (2015). Quantitative Estimation of Bovine Serum Albumin Protein Using UV-Visible Spectroscopy. World Wide Journal of Multidisciplinary Research and Development, 1(4), 66–69.
Badoni, R., Kumar, D., Combrinck, S., & Viljoen, A. M. (2015). Phytochemistry Gingerols and shogaols : Important nutraceutical principles from ginger. Phytochemistry, 117, 554–568. https://doi.org/10.1016/j.phytochem.2015.07.012
Bailey-shaw, Y. A., Williams, L. A. D., Green, C. E., Rodney, S., & Smith, A. M. (2017). In-vitro evaluation of the anti-inflammatory potential of selected Jamaican plant extracts using the Bovine Serum albumin protein denaturation assay. International Journal of Pharmaceutical Sciences Review and Research, 47(1), 145–153.
Ben Mustapha, M., Bousselmi, M., Jerbi, T., Ben Bettaïeb, N., & Fattouch, S. (2014). Gamma radiation affects Tunisian millet's microbiological, physicochemical, and antioxidant properties (Pennisetum Glaucum L.R.Br.). Food Chemistry, 154(2014), 230–237. https://doi.org/10.1016/j.foodchem.2014.01.015
Bouhlali, E. dine T., Hmidani, A., Bourkhis, B., Khouya, T., Ramchoun, M., Filali-Zegzouti, Y., & Alem, C. (2020). Phenolic profile and anti-inflammatory activity of four Moroccan dates (Phoenix dactylifera L.) seed varieties. Heliyon, 6(2), e03436. https://doi.org/10.1016/j.heliyon.2020.e03436
Chatterjee, S., Kumar, V., Khole, S., Sanyal, B., Murali, T. S., & Variyar, P. S. (2015). ScienceDirect Radiation processing : An effective quality control tool for hyalinization and extending the shelf life of a herbal formulation, Amritamehari churn. Journal of Radiation Research and Applied Sciences, October 1–10. https://doi.org/10.1016/j.jrras.2015.09.007
Dugasani, S., Pichika, M. R., Nadarajah, V. D., Balijepalli, M. K., Tandra, S., & Korlakunta, J. N. (2010). Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol. Journal of Ethnopharmacology, 127(2), 515–520. https://doi.org/10.1016/j.jep.2009.10.004
Ezzat, S. M., Ezzat, M. I., Okba, M. M., Menze, E. T., & Abdel-Naim, A. B. (2018). The hidden mechanism beyond ginger (Zingiber officinale Rosc.) potent in vivo and in vitro anti-inflammatory activity. Journal of Ethnopharmacology, 214(December 2017), 113–123. https://doi.org/10.1016/j.jep.2017.12.019
Feuerstein, G. Z., Ruffolo, R. R., Coughlin, C., Wang, J., & Miller, D. (2007). Inflammation Introduction Immune and Inflammatory Cells in Acute Inflammation: Role of Endothelium and Adhesion Molecules Inflammation, Atherosclerosis, and Cardiovascular Diseases Inflammation and Cancer Inflammation and Metabolic Syndrome Inflammation. 530–535.
Fitzpatrick, L. R., Woldemariam, T., Northstate, C., Grove, E., & States, U. (2017). Small-Molecule Drugs for the Treatment of Inflammatory Bowel Disease. In Comprehensive Medicinal Chemistry III (Vol. 5). Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.12404-7
Ghasemian, M., Owlia, S., & Owlia, M. B. (2016). Review of Anti-Inflammatory Herbal Medicines. 2016.
Iwalewa, E. O., McGaw, L. J., Naidoo, V., & Eloff, J. N. (2007). Inflammation: The foundation of diseases and disorders. A review of phytomedicines of South African origin used to treat pain and inflammatory conditions. African Journal of Biotechnology, 6(25), 2868–2885. https://doi.org/10.5897/ajb2007.000-2457
Kalaiselvan, R. R., Sugumar, A., & Radhakrishnan, M. (2018). Gamma Irradiation Usage in Fruit Juice Extraction. Fruit Juices: Extraction, Composition, Quality and Analysis, 2017, 423–435. https://doi.org/10.1016/B978-0-12-802230-6.00021-7
Karunakaran, R., & Sadanandan, S. P. (2019). Zingiber officinale: Antiinflammatory Actions and Potential Usage for Arthritic Conditions. In Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases (2nd ed.). Elsevier Inc. https://doi.org/10.1016/b978-0-12-813820-5.00013-1
Katrin, E., Andayani, W., Susanto dan Winarno, H. (2014). Pengaruh Iradiasi Gamma Pada Toksisitas Akut Oral Ekstrak Etanol Jahe Merah (Zingiber officinale). Jurnal Ilmiah Aplikasi Isotop Dan Radiasi, 10(1), 55–70.
Mamatha, A., Patil, K. S., & Ashok, P. (2010). Effect of gamma irradiation on the pharmacological activity of Andrographis paniculata Available online through the effect of gamma irradiation on the pharmacological activity of Andrographis paniculata. June 2018.
Mao, Q. Q., Xu, X. Y., Cao, S. Y., Gan, R. Y., Corke, H., Beta, T., & Li, H. Bin. (2019). Bioactive compounds and bioactivities of ginger (zingiber officinale roscoe). Foods, 8(6), 1–21. https://doi.org/10.3390/foods8060185
Mbaveng, A. T., & Kuete, V. (2017). Zingiber officinale. In Medicinal Spices and Vegetables from Africa: Therapeutic Potential Against Metabolic, Inflammatory, Infectious and Systemic Diseases. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809286-6.00030-3
Naveed, S., Rizwan, E., & Sajid, A. (2018). Effect of Gamma Irradiation on Phytochemical Content and Antimicrobial Activities of Selected Herbs. ChemXpress, 11(1), 1–15.
Onyenekwe, P. C. (2000). Assessment of oleoresin and gingerol contents in gamma-irradiated ginger rhizomes. Nahrung - Food, 44(2), 130–132. https://doi.org/10.1002/(sici)1521-3803(20000301)44:2<130::aid-food130>3.0.co;2-v
Padmanabhan, P., & Jangle, S. N. (2012). Evaluation of the in-vitro anti-inflammatory activity of herbal preparation, a combination of four medicinal plants. Researchgate.Net, 2(1), 109–116.
Sang, S., Hong, J., Wu, H., Liu, J., Yang, C. S., Pan, M. H., Badmaev, V., & Ho, C. T. (2009). Increased growth inhibitory effects on human cancer cells and anti-inflammatory potency of shogaols from Zingiber officinale relative to gingerols. Journal of Agricultural and Food Chemistry, 57(22), 10645–10650. https://doi.org/10.1021/jf9027443
Shahidi, F., & Yeo, J. D. (2018). Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. International Journal of Molecular Sciences, 19(6), 1–16. https://doi.org/10.3390/ijms19061573
Sudha, A., Srinivasan, P., Thamilarasan, V., & Sengottuvelan, N. (2016). Exploring the binding mechanism of 5-hydroxy-3′,4′,7-trimethoxyflavone with bovine serum albumin: Spectroscopic and computational approach. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 157(December), 170–181. https://doi.org/10.1016/j.saa.2015.12.028
Sudprasert, W., Navasumrit, P., & Ruchirawat, M. (2006). Effects of low-dose gamma radiation on DNA damage, chromosomal aberration and expression of repair genes in human blood cells. International Journal of Hygiene and Environmental Health, 209(6), 503–511. https://doi.org/10.1016/j.ijheh.2006.06.004
Taheri, S., Abdullah, T. L., Karimi, E., Oskoueian, E., & Ebrahimi, M. (2014). Antioxidant capacities and total phenolic contents enhancement with acute gamma irradiation in Curcuma alismatifolia (Zingiberaceae) leaves. International Journal of Molecular Sciences, 15(7), 13077–13090. https://doi.org/10.3390/ijms150713077
Tatti, P. N., Anitha, S., Shashidhara, S., Deepak, M., & Bidari, S. (2012). Evaluation of in-vitro Anti-Denaturation Activity of Isolated Compound of Butea Monosperma Bark. Pharma Science Monitor, 3(4), 2314–2320.
U. S. Pharmacopeia. (2019). USP 42 and NF 37, National formulary. The United States Pharmacopeial Convention. Volume 1-5.
Variyar, P. S., Gholap, A. S., & Thomas, P. (1997). Effect of γ-irradiation on the volatile oil constituents of fresh ginger (zingiber officinale) rhizome. Food Research International, 30(1), 41–43. https://doi.org/10.1016/S0963-9969(97)00010-0
Whittaker, J. A., & Vogler, B. (2008). The in vitro Anti-denaturation Effects Induced by Natural Products and Non- steroidal Compounds in Heat Treated ( Immunogenic ) Bovine Serum Albumin is Proposed as a Screening Assay f ... The in vitro Anti-denaturation Effects Induced by Natural Products. January 2016. https://doi.org/10.1215/9780822388630-010
Williams, L.A.D., Vasquez, E.A., Milan, P.P., Zebitz, C., Kraus, W. (2002). IN VITRO ANTI-INFLAMMATORY AND ANTIMICROBIAL ACTIVITIES OF PHENYLPROPANOIDS FROM Piper belle L. (PIPERACEAE). Natural Products in the New Millennium: Prospects and Industrial Application. Proceedings of the Phytochemical Society of Europe, Vol 47. Springer, Dordrecht., 47, 221–227.
Williams, L. (2009). Further Insight into the Bovine Serum Albumin Assay ( The in vitro Anti-inflammatory Assay ) Profundización en el Ensayo de Albúmina de Suero Bovino ( El Ensayo Anti-inflammatory in vitro ). West Indian Med J, 58(2), 2–3.
Zetoune, F. S., Serhan, C. N., & Ward, P. A. (2014). Inflammatory Disorders☆. In Reference Module in Biomedical Sciences (Issue July). Elsevier Inc. https://doi.org/10.1016/b978-0-12-801238-3.05096-0
Zhang, S., Kou, X., Zhao, H., Mak, K. K., Balijepalli, M. K., & Pichika, M. R. (2022). Zingiber officinale var. rubrum: Red Ginger’s Medicinal Uses. Molecules, 27(3). https://doi.org/10.3390/molecules27030775
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.