Prediksi Keterlambatan Penerbangan Menggunakan Metode Decision Tree Untuk Penentuan Premi Asuransi Perjalanan

Authors

  • Shella Lolitha Universitas Pelita Harapan
  • Samuel Lukas Universitas Pelita Harapan
  • Frans Panduwinata Universitas Pelita Harapan

Keywords:

Pohon Keputusan, Perhitungan Premi, Keterlambatan Penerbangan, Asuransi Perjalanan

Abstract

Flight delays become an inevitable issue on flight commercial. Compensation regulated in the Ministerial Regulation considered disproportionate with occurring delays. Otherwise, airline company party are also reluctant to improve the quality of service, one of the reason is pay compensation cost for passenger is much less expensive than the cost for improving services. Therefore, a system needed for calculating the amount of premium that can be paid by passengers to benefit both parties. By using statistical calculation
method and machine learning algorithm, Decision Tree, delays can be predicted based on category of delays regulated in the Ministerial Regulation and insurance premium can be calculated accordingly and mutually beneficial to both parties. Phase of system design is as follows: read flight commercial in Indonesia from year 2017 to 2019 raw data, preprocess data, cleanse data, train data, process prediction, calculate premium and build visualization for presenting prediction result and premium price. Test result based on confusion matrix shows that model for predicting delays has an accuracy of 72.76%. Then from validation process, it obtained that similarity level of prediction result to validation result is 96.14%. The premium calculation result has premium value that is more reasonable and profitable for passenger flight.

Downloads

Download data is not yet available.

Author Biographies

Shella Lolitha, Universitas Pelita Harapan

Department of Informatics Engineering
Faculty of Engineering

Samuel Lukas, Universitas Pelita Harapan

Department of Informatics Engineering
Faculty of Engineering

Frans Panduwinata, Universitas Pelita Harapan

Department of Informatics Engineering
Faculty of Engineering

References

Badan Pusat Statistik, Lalu Lintas Penerbangan Dalam Negeri Indonesia Tahun 2003-2018. (2020). https://www.bps.go.id/statictable/2009/02/21/1402/lalu-lintas-penerbangan-dalam-negeriindonesia-tahun-2003-2018.html. (diakses tanggal 17 Oktober 2020).

Aviation Safety Network, Airliner Accident Fatalities Per Year 1946-2017. (2017). https://aviationsafety.net/graphics/infographics/Fatal-AccidentsPer-Year-1946-2017.jpg. (diakses tanggal 17 Oktober 2020).

Pemerintah Indonesia, Peraturan Menteri Perhubungan Republik Indonesia Nomor PM 89 Tahun 2015 Tentang Penanganan Keterlambatan (Delay Management) Pada Badan Usaha Angkutan Udara Niaga Berjadwal di Indonesia. Lembaran RI Tahun 2015 No. 6. Jakarta: Sekretariat Negara. (2015).

Hungelmann, J, Insurance for dummies, Hoboken, NJ: Wiley. (2009).

Kagan, Julia, Insurance Premium. (2019). https://www.investopedia.com/terms/i/insurancepremium.asp. (diakses tanggal 17 Oktober 2020)

Lukas, S., Margaretha, H., Stefanim D., Widjaja, P., Feng, Ben, Insurance Premium Model For Flight Delay Using Standar Deviation, GLM And SVM. Universitas Pelita Harapan & University of Waterloo. (2019).

Kotsiantis, S. B., Supervised Machine Learning: A Review of Classification Techniques. Informatica 31, 249-268. (2007).

Rokach, L.; Maimon, O., Top-down induction of decision trees classifiers-a survey. IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews, 35 (4): 476–487. CiteSeerX 10.1.1.458.7031. doi:10.1109/TSMCC.2004.843247. (2008).

Published

2021-01-01

How to Cite

Lolitha, S., Lukas, S., & Panduwinata, F. (2021). Prediksi Keterlambatan Penerbangan Menggunakan Metode Decision Tree Untuk Penentuan Premi Asuransi Perjalanan. Prosiding Seminar Nasional Teknoka, 5, 50–58. Retrieved from https://journal.uhamka.ac.id/index.php/teknoka/article/view/10235