Integration Of Solar Panels With Thermoelectric Modules As A Solar-Powered Room Cooling System
Abstract
Solar energy, as a renewable energy source, can be utilized as a power generator for room cooling systems. The room cooling system receives electrical energy supply from the conversion of solar radiation through solar panels. Subsequently, this solar generator system is integrated with thermoelectric modules to produce a cold condition within the cooling system. The objective of this research is to achieve maximum heat absorption by the thermoelectric cooler in the room cooling system, determine the lowest attainable temperature, and evaluate the coefficient of performance of the cooling system. The method employed is an experimental approach, utilizing a room cooling model represented by a 0.25 m3 volume cooling box. The solar cells, serving as the power source, are oriented towards the north to maximize sunlight intensity over an extended period. The solar cell output, in the form of electrical and thermal energy, is supplied to the thermoelectric cooling system arranged in series. When electrical power is applied to the thermoelectric modules, temperature changes occur on both sides. The cold side absorbs heat from the cooling space, while the hot side releases heat into the environment. The use of a heatsink on the cold side enhances heat absorption. After conducting experiments, data collection, and processing, the overall solar cell output is determined to be 413.23 W. Meanwhile, the thermoelectric cooler achieves a minimum temperature of 24.6°C. The total heat load is found to be 416.70 W, resulting in a coefficient of performance for the cooling system of 1.01.
Downloads
References
M. K. Usman, S. Syarifudin, and S. S. Budi, “Upaya Peningkatan Pengetahuan Energi Terbarukan Di SMK Ma’Arif NU Talang Kota Tegal,” J. Pengabdi. Masy. Bumi Raflesia, vol. 3, no. 2, pp. 374–378, 2020, doi: 10.36085/jpmbr.v3i2.915.
R. Hidayat et al., “Modul Pembangkit Listrik Tenaga Surya untuk Aplikasi Beban Rendah (600 W),” J. INTEKNA Inf. Tek. dan Niaga, vol. 17, no. 1, pp. 29–36, 2017, doi: 10.31961/intekna.v17i1.490.
Rifky, A. Fikri, and M. Mujirudin, “Roofs and Walls of Buildings as a Media for Converting Solar Thermal Energy into Electrical Energy,” in Procedia of Engineering and Life Science, 2021, vol. 1, no. 1, pp. 1–6, doi: 10.21070/pels.v1i1.793.
Y. S. Gaos et al., “The performance of solar collector CPC (compound parabolic concentrator) type with three pipes covered by glass tubes,” in Renewable Energy Technology and Innovation for Sustainable Development, 2017, pp. 020022–1–020022–9, doi: 10.1063/1.4979238.
R. C. P. Sigalingging, “Studi Dampak Penggunaan Insulasi pada Bangunan Rumah Tinggal terhadap Konsumsi Energi Pendingin Ruangan,” J. Sci. Appl. Technol., vol. 5, no. 2, pp. 418–426, 2021, doi: 10.35472/jsat.v5i2.610.
Mirmanto, R. Sutanto, and D. K. Putra, “Unjuk Kerja Kotak Pendingin Termoelektrik dengan Varuasi Laju Aliran Massa Air Pendingin,” J. Tek. Mesin, vol. 7, no. 1, pp. 44–49, 2018, doi: 10.22441/jtm.v7i1.2307.
O. B. Tsvetkov, Y. A. Laptev, A. V. Sharkov, V. V. Mitropov, and A. V. Fedorov, “Alternative Refrigerants with Low Global Warming Potential for Refrigeration and Air-Conditioning Industries,” IOP Conf. Ser. Mater. Sci. Eng., vol. 905, no. 1, pp. 5–9, 2020, doi: 10.1088/1757-899X/905/1/012070.
R. Pratama and L. Parinduri, “Penanggulangan Pemanasan Global,” Bul. Utama Tek., vol. 15, no. 1, pp. 91–95, 2019.
M. Xue, N. Kojima, L. Zhou, T. Machimura, and A. Tokai, “Trade-Off Analysis Between Global Impact Potential and Local Risk: A Case Study of Refrigerants,” J. Clean. Prod., vol. 217, pp. 627–632, 2019, doi: 10.1016/j.jclepro.2019.01.293.
Mirmanto, S. Syahrul, and Y. Wirdan, “Experimental Performances of a Thermoelectric Cooler Box with Thermoelectric Position Variations,” Eng. Sci. Technol. an Int. J., vol. 22, no. 1, pp. 177–184, 2019, doi: 10.1016/j.jestch.2018.09.006.
Rifky and Y. S. Gaos, “Pengembangan Model Pendingin Kabin City Car Bertenaga Surya Menggunakan Photovoltaics (PV) dan Thermoelectric (TEC),” Teknobiz, vol. 10, no. 1, pp. 34–40, 2020.
A. F. Moazzez, G. Najafi, B. Ghobadian, and S. S. Hoseini, “Numerical Simulation and Experimental Investigation of Air Cooling System Using Thermoelectric Cooling System,” J. Therm. Anal. Calorim., vol. 139, no. 4, pp. 2553–2563, 2019, doi: 10.1007/s10973-019-08899-x.
E. S. Jeong, “Optimization of thermoelectric modules for maximum cooling capacity,” Cryogenics (Guildf)., vol. 114, no. November 2020, p. 103241, 2021, doi: 10.1016/j.cryogenics.2020.103241.
H. F. Putra, D. Suprayogi, T. A. Ajiwiguna, and M. Eng, “Pengembangan Kotak Pendingin Berbasis Termoelektrik dengan Memanfaatkan Heatpipes sebagai Komponen Pelepas Kalor,” in e-Proceeding of Engineering, 2018, vol. 5, no. 3, pp. 5801–5808.
H. Ananta, Y. A. Padang, and M. Mirmanto, “Unjuk Kerja Kulkas Termoelektrik dengan Rangkaian Seri dan Paralel pada Beban Air 1500 ml,” Din. Tek. Mesin, vol. 7, no. 2, pp. 80–86, 2017, doi: 10.29303/d.v7i2.157.
M. Azhar and D. A. Satriawan, “Implementasi Kebijakan Energi Baru dan Energi Terbarukan dalam Rangka Ketahanan Energi Nasional,” Adm. Law Gov. J., vol. 1, no. 4, pp. 398–412, 2018, doi: 10.14710/alj.v1i4.398-412.
H. S. Lee, Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells, First Edit. Canada: John Wiley & Sons, Ltd, 2010.
Z. Sen, “Solar Energy in Progress and Future Research Trends,” Prog. Energy Combust. Sci., vol. 30, no. 4, pp. 367–416, 2004, doi: 10.1016/j.pecs.2004.02.004.
C. A. Siregar, A. M. Siregar, M. Daud, and M. D. Nasution, “Pemetaan Potensi Radiasi Matahari Berdasarkan Perhitungan Matematika di Sumatera Utara,” in Seminar Nasional Teknologi Edukasi dan Humaniora, 2021, vol. 1, pp. 72–77, doi: https://doi.org/10.53695/sintesa.v1i1.207.
P. Harahap, “Pengaruh Temperatur Permukaan Panel Surya terhadap Daya yang Dihasilkan dari Berbagai Jenis Sel Surya,” RELE (Rekayasa Elektr. dan Energi) J. Tek. Elektro, vol. 2, no. 2, pp. 73–80, 2020, doi: 10.30596/rele.v2i2.4420.
Rifky and O. Heriyani, “Car Cabin Cooling System Using Solar Energy,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1088, no. 1, p. 012055, 2021, doi: 10.1088/1757-899x/1088/1/012055.
Muchammad and E. Yohana, “Pengaruh Suhu Permukaan Photovoltaic Module 50 Watt Peak Terhadap Daya Keluaran Yang Dihasilkan Menggunakan Reflektor Dengan Variasi Sudut Reflektor 00, 500, 600, 700, 800,” Rotasi, vol. 12, no. 3, pp. 14–18, 2010.
E. Saputra, D. Purwanto, S. R. Rahim, and A. I. Bakhtiar, “Peningkatan Performa Panel Surya dengan Sistem Pendingin untuk Mereduksi Panas Permukaan,” J. Media Mesin, vol. 23, no. 1, pp. 28–35, 2021.
R. Pido, S. Himran, and Mahmuddin, “Analisa Pengaruh Pendinginan Sel Surya Terhadap Daya Keluaran dan Efisiensi,” Teknologi, vol. 19, no. 1, pp. 31–38, 2018.
A. T. A. Salim and B. Indarto, “Studi Eksperimental Karakterisasi Elemen Termoelektrik Peltier Tipe TEC,” JEECAE (Journal Electr. Electron. Control. Automot. Eng., vol. 3, no. 1, pp. 179–182, 2018, doi: 10.32486/jeecae.v3i1.211.
Y. A. Cengel and A. J. Ghajar, Heat and Mass Transfer Fundamentals & Aplications, Fifth Edit. New York: McGraw-Hill Education, 2015.
J. P. Holman, Heat Transfer, Tenth Edit. New York: McGraw-Hill, 2010.
Hengki, M. Rahmat, and S. P. Sutisna, “Analisa Efisiensi Energi Alat Pendingin Portable di Sepeda Motor,” MEKANIKA, vol. 1, no. 2, pp. 1–10, 2020.
M. Usman, “Analisis Intensitas Cahaya terhadap Energi Listrik yang Dihasilkan Panel Surya,” Power Elektron. J. Orang Elektro, vol. 9, no. 2, pp. 52–57, 2020, doi: 10.30591/polektro.v9i2.2047.
M. M. Aboelmaaref et al., “Design and Performance Analysis of A Thermoelectric Air-Conditioning System Driven by Solar Photovoltaic Panels,” J. Mech. Eng. Sci., vol. 0, no. 0, pp. 1–14, 2020, doi: 10.1177/0954406220976164.
D. Liestyowati, I. Rachman, E. Firmansyah, and M. Mujiburrohman, “Rancangan Sistem Pembangkit Listrik Tenaga Surya (PLTS) Berkapasitas 100 WP dengan Inverter 1000 Watt,” INSOLOGI J. Sains dan Teknol., vol. 1, no. 5, pp. 623–634, 2022, doi: 10.55123/insologi.v1i5.1027.
A. Asrori and E. Yudiyanto, “Kajian Karakteristik Temperatur Permukaan Panel terhadap Performansi Instalasi Panel Surya Tipe Mono dan Polikristal,” Flywheel J. Tek. Mesin Untirta, vol. V, no. 2, pp. 68–74, 2019.
A. Silfiyati, “Kaji Eksperimental Distribusi Temperatur pada Portable Cold Storage dengan Thermoelektrik TEC1-12706,” Sepuluh Nopember Institute Of Technology, 2016.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Prosiding Seminar Nasional Teknoka
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.