Analisis Sentimen Kenaikan Harga BBM pada Media Sosial Twitter

Authors

  • Iqbal Musyaffa Universitas Muhammadiyah Prof. Dr. Hamka
  • Mia Kamayani Universitas Muhammadiyah Prof. Dr. Hamka

Keywords:

RapidMiner, Naïve Bayes Classifier, Decision Tree, Sentiment Analysis, Fuel Oil Rises

Abstract

Based on information in a press conference at the Merdeka Palace on Saturday, 03 September 2022 at 14.30 WIB, President Joko Widodo has decreed that the price of fuel be officially raised. This is a burden for road users, especially users of two-wheeled vehicles. Currently, many people use social media sites to submit complaints regarding this topic. One of them social media Twitter. Therefore, sentiment analysis was carried out using 2 methods, namely the Naïve Bayes Classifier and the Decision Tree on 1100 tweets obtained from the keyword "bbm up". The test results show thatthe best Performance is using the Naïve Bayes Classifier algorithm, which produces values with an accuracy of 94.91%and for the Decision Tree algorithm only gets an accuracy of 62.57%. The results of sentiment are, positive totaling 68data, neutral totaling 20 data, and negative totaling 301 data. The results of more negative sentiment show that the increase in fuel prices in Indonesia has not been accepted by the Indonesian people on social media Twitter.

Downloads

Download data is not yet available.

Author Biographies

Iqbal Musyaffa, Universitas Muhammadiyah Prof. Dr. Hamka

Fakultas Teknologi Industri dan Informatika

Teknik Informatika

Mia Kamayani, Universitas Muhammadiyah Prof. Dr. Hamka

Fakultas Teknologi Industri dan Informatika

Teknik Informatika

References

B. C. Sandy, D. Manongga and A. Iriani,"Analisis Sentimen Terhadap Kenaikan HargaBahan Bakar Minyak (Bbm) Pada Media Online," Prosiding Semmau , 2015.

E. F. U. Latifah, "Perbandingan Kinerja Machine Learning Berbasis Algoritma Support Vector Machine Dan Naive Bayes," 2018.

B. M. Pintoko and K. Muslim, "Analisis Sentimen Jasa Transportasi Onlinepada Twitter Menggunakan MetodeNaïve Bayes Classifier," 2018.

Y. S. Mahardhika and E. Zuliarso, "Analisis Sentimen Terhadap Pemerintahan Joko Widodo Pada Media Sosial Twitter Menggunakan Algoritma Naives Bayes Classifier," 2018.

M. Syarifuddin, "Analisis Sentimen Opini Publik Terhadap Efek Psbb Pada Twitter Dengan Algoritma Decision Tree-Knn-Naïve Bayes," 2020.

N. T. Romadloni, I. Santoso and S. Budilaksono, "Perbandingan Metode Naive Bayes, Knn Dan Decision Tree Terhadap Analisis Sentimen Transportasi Krl Commuter Line," 2019.

T. S. Boenga NurCitra, "Dampak Pembelajaran Jarak Jauh Dan Physical Distancing PADA Tingkat Kecemasan Mahasiswa Fakultas Kedokteran Universitas Pembangunan Nasional "Veteran" Jakarta," Journal of Bourneo Holistic Health, vol. 3, p. 2, 2020.

S. K. Dzikra Rafik Putra, "Sistem Pendukung Keputusan Untuk Diagnosis Banding Gangguan Somatoform Berbasis PPDGJ III," JURNAL FASILKOM, vol. Volume 10 No. 2, p. 2, 2020.

T. V. d. P. P. O. S. M. Rizkiana Prima Rahmadina, "Visualisasi Data Jumlah Penderita Diare yang Dilayani dan Jumlah Desa/Kelurahan yang Melaksanakan Sanitasi Total Berbasis Masyarakat (STBM) Tahun 2016 dan 2017 di Indonesia Menggunakan Software R-Studio," pp. 2-8, 2019.

N. M. M. Komang Trisnadewi, "Pembelajaran Daring di Masa Pandemi Covid-19," in COVID19:Perspektif Pendidikan, Bali, Yayasan Kita Menulis, 2020, pp. 48-49.

Published

2022-12-23

How to Cite

Musyaffa, I., & Kamayani, M. (2022). Analisis Sentimen Kenaikan Harga BBM pada Media Sosial Twitter. Prosiding Seminar Nasional Teknoka, 7, 124–134. Retrieved from https://journal.uhamka.ac.id/index.php/teknoka/article/view/11244