Studi Algoritma Linear Support Vector Machine pada Deteksi Ujaran Kebencian Berbahasa Indonesia

Indonesian

Penulis

  • Alfi Ramdhani Universitas Muhammadiyah Prof.DR.HAMKA

Kata Kunci:

Ujaran Kebencian, Twitter, Machine Learning, Linear Support Vector Machine

Abstrak

Ekspresi ujaran kebencian merupakan suata fenomena yang berkembangan di dunia masyarakat era modern ini, banyak dari pengguna media sosial memanfaatkannya untuk mengekspresikan perasaan mereka maupun kehidupannya.  Namun dari fenomena ini semua berdampak kepada  lingkungan masyarakat yang terkesan sangat bebas mengekspresikan ujaran kebencian  dan berujung kepada tindakan kejahatan, entah darimana asal-usul penyebab terjadinya, bisa jadi karena pengaruh provokasi atau hal-hal lainnya yang persuasif. Maka dari itu tujuan penelitian melakukan studi terhadap algoritma Linear Support Vector Machine dalam melakukan deteksi ujaran kebencian berbahasa Indonesia. Metode yang digunakan adalah algoritma Linear Support Vector Machine dengan feature Word N Gram. Dari hasil percobaan, diperoleh hasil evaluasi akurasi sebesar 86.55 % dengan metode 10-fold cross validation

 

Unduhan

Data unduhan belum tersedia.

Biografi Penulis

Alfi Ramdhani, Universitas Muhammadiyah Prof.DR.HAMKA

Program Studi Informatika

Fakultas Teknik

Referensi

W. Warner and J. Hirschberg, "Detecting hate speech on the world wide web,” Proceeding LSM '12 Proc. Second Work. Lang. Soc. Media, no. Lsm, pp. 19–26, 2012.

Z. Waseem and D. Hovy, "Hateful Symbols or Hateful People? Predictive Features for Hate Speech Detection on Twitter,” Proc. NAACL Student Res. Work., pp. 88–93, 2016.

I. Alfina, R. Mulia, M. I. Fanany, and Y. Ekanata, "A Dataset and Preliminary Study,” Adv. Comput. Sci. Inf. Syst. (ICACSIS), 2017 Int. Conf. 2017, pp. 1–5, 2017.

T. Davidson, D. Warmsley, M. Macy, and I. Weber, "Automated Hate Speech Detection and the Problem of Offensive Language,” Proc. 11th Int. AAAI Conf. Web Soc. Media, no. Icwsm, pp. 512–515, 2017.

B. Gambäck and U. K. Sikdar, "Using Convolutional Neural Networks to Classify Hate-Speech,” Proc. First Work. Abus. Lang. Online, no. 7491, pp. 85–90, 2017.

P. Badjatiya, S. Gupta, M. Gupta, and V. Varma, "Deep Learning for Hate Speech Detection in Tweets,” vol. 2017, no. April, pp. 1–3, 2017.

G. Chowdhury, "Natural language processing,” Annu. Rev. Inf. Sci. Technol., vol. 37, pp. 51–83, 2003.

N. Kumar, "A Review on Machine Learning Algorithms , Tasks and Applications,” Int. J. Adv. Res. Comput. Eng. Technol., vol. 6, no. 10, 2017.

A. S. Nugroho, A. B. Witarto, and D. Handoko, "Support vector machine: Teori dan Aplikasinya dalam Bioinformatika,” IlmuKomputer.Com., 2003.

C. Cortes and V. Vapnik, "Support-Vector Networks,” Mach. Learn., vol. 297, no. 20, pp. 273–297, 1995.

D. Fradkin and I. Muchnik, "Support Vector Machines for Classification,” DIMACS Ser. Discret. Math. Theor. Comput. Sci., pp. 1–9, 2000.

Y. Tang, "Deep Learning using Linear Support Vector Machines,” ICML 2013 Challenges Represent. Learn. Work., 2013.

F. Pedregosa, R. Weiss, and M. Brucher, "Scikit-learn"¯: Machine Learning in Python,” J. ofMachine Learn. Res., vol. 12, pp. 2825–2830, 2011.

T. Davidson, D. Warmsley, M. Macy, and I. Weber, "Automated Hate Speech Detection and the Problem of Offensive Language ∗,” 2013.

Unduhan

Diterbitkan

2019-01-10

Cara Mengutip

Ramdhani, A. (2019). Studi Algoritma Linear Support Vector Machine pada Deteksi Ujaran Kebencian Berbahasa Indonesia: Indonesian. Prosiding Seminar Nasional Teknoka, 3, I42-I44. Diambil dari https://journal.uhamka.ac.id/index.php/teknoka/article/view/2899