Comparison of Edge Detection in Robinson and Kirsch Methods
Keywords:
metode Robinson,metode Kirsch,deteksi tepi, Robinson method, Kirsch method, edge detectionAbstract
This study aims to compare Robinson's edge detection method and Kirsch's method on image with a focus on the disclosure of special features such as texture, watermark, and design elements. Robinson's edge detection method uses a series of filters with eight neighboring pixel operations, while Kirsch's method uses a series of filters with more specific filter orientation to produce sharper edge responses. Paper money images were selected as research objects because they had distinctive features relevant to edge detection, such as differences in intensity on edge lines, smooth paper textures, and special patterns on watermarks. This research using banknote image and lung X-rays image dataset. From the results of comparison of edge detection with Robinson's method and Kirsch method it can be concluded that on Robinson's method the edge image of banknotes displays more detailed design elements of banknotes such as hero photographs, watermark, logo, and nominal. In the Kirsch method the bank image has a sharp edge response so that many of the design elements on the banknote are not clearly visible and contrasted with other banknotes. In a comparison of edge detection between Robinson and Kirsch's methods on pneumonia-infected lung X-rays, it can be inferred that Robinson produced a fine edge line but was difficult to find infection, while Kirsch produced a rough edge line that clarified infection in pneumonia-infected lungs.
Downloads
References
L. Widiawati, “Akurasi Deteksi Tepi Wajah dengan Metode Robert , Metode Prewitt Dan Metode Sobel,” J. Ilm. MIKA AMIK Al Muslim, pp. 79–87, 2019.
Xie, Y., & Zhang, L. (2016). A Comparative Study of Edge Detection Techniques in Natural Images. International Journal of Computer Science and Network Security, 16(5), 36-42.
Li, J., & Zhou, F. (2018). Edge Detection Method of Banknote Image Based on Canny Operator and Laplacian of Gaussian Operator. International Journal of Signal Processing, Image Processing and Pattern Recognition, 11(1), 49-54.
Bank Indonesia. (2016). Tanya Jawab Mengenali Ciri Keaslian Uang Rupiah Tahun Emisi 2016. Diambil kembali dari https://www.bi.go.id/id
N. P. Sutramiani, Ik. G. Darmaputra, and M. Sudarma, “Local Adaptive Thresholding Pada Preprocessing Citra Lontar Aksara Bali,” Maj. Ilm. Teknol. Elektro, vol. 14, no. 1, pp. 27–30, 2015, doi: 10.24843/mite.2015.v14i01p06.
Ridwan, S. Hotlan sitorus, and D. Marisa Midyanti, “Penerapan Metode Edge Detection Kirsch dan Robinson Untuk Mendeteksi Keaslian Uang Kertas Rupiah,” Komput. dan Apl., vol. 08, no. 4654, pp. 23–33, 2020.
E. V. Haryanto, “Penerapan Metode Kirsch Dalam Mendeteksi Tepi Objek Citra Digital,” Proc. Konf. Nas. Sist. dan Inform., 2015.
E. L. Utari, R. D. Ngaisyah, and H. Surbakti, “Sistem Identifikasi Citra Janin Terhadap Asupan Gizi Ibu Hamil Dengan Menggunakan Metode Sobel Dan Kirsch,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 11, no. 2, pp. 448–461, 2021, doi: 10.24176/simet.v11i2.5709.
V. Lusiana, “Deteksi Tepi pada Citra Digital Menggunakan Metode Kirsch dan Robinson,” J. Teknol. Inf. Din., vol. 18, no. 2, pp. 182–189, 2019.
R. Rahmadewi, “Analisa Perbandingan Beberapa Metode Deteksi Tepi Pada Citra Rontgen Penyakit Paru Paru,” J. Media Elektro, vol. 1, no. 2, pp. 9–12, 2017, doi: 10.35508/jme.v0i0.6194.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Prosiding Seminar Nasional Teknoka
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.