Integrasi Grafin Oksida Berbasis Larutan sebagai Material Penghantar Lubang pada Sel Surya Hibrid Bulk-Heterojunction (BHJ)

Indonesian

  • Alfian F. Madsuha Universitas Indonesia
  • Nofrijon Sofyan Universitas Indonesia
  • A. H. Yuwono Universitas Indonesia

Abstract

Dalam penelitian kali ini, telah didemonstarsikan penggunaan Grafin Oksida (GO) sebagai material pengantar lubang pada sel surya hibrid Bulk-Heterojunction (BHJ). Sebuah metode sederhana digunakan dalam memodifikasi anoda dari sel surya hibrid dengan cara mendeposisi material karbon nano hasil proses larutan diantara kaca transparan indium timah oksida(ITO) dan lapisan fotoaktif. Perngguanan GO ini ditujukan untuk mengganti secara keseluruhan polimer konduktif poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Dengan penggunaan lapisan GO ini, perbaikan efisiensi konversi energi dari 0,1% menjadi 1,66 % dapat dicapai melalu mekanisme penurunan hambatan seri (RS). Dengan hasil ini GO telah berhasil menunjukkan potensial yang besar untuk digunakan sebagai material pengantar lubang yang efisien pada sel surya hibrid

Author Biographies

Alfian F. Madsuha, Universitas Indonesia
Departemen Metalurgi dan Material Fakultas Teknik  
Nofrijon Sofyan, Universitas Indonesia
Departemen Metalurgi dan Material Fakultas Teknik
A. H. Yuwono, Universitas Indonesia
  Departemen Metalurgi dan Material  Fakultas Teknik  

References

Jonda, C., et al., Surface roughness effects and their influence on the degradation of organic light emitting devices. Journal of Materials Science, 2000. 35(22): p. 5645–5651.

Jong, M.P.d., L.J. van IJzendoorn, and M.J.A. de Voigt, Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Applied Physics Letters, 2000. 77(14): p. 2255–2257.

Wong, K.W., et al., Blocking reactions between indium-tin oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer. Applied Physics Letters, 2002. 80(15): p. 2788–2790.

Kim, Y.-H., et al., Performance and stability of electroluminescent device with self-assembled layers of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) and polyelectrolytes. Thin Solid Films, 2006. 510(1–2): p. 305–310.

Norrman, K., et al., Degradation Patterns in Water and Oxygen of an Inverted Polymer Solar Cell: Journal of the American Chemical Society. J. Am. Chem. Soc., 2010. 132(47): p. 16883–16892.

Winter, I., et al., The thermal ageing of poly(3,4-ethylenedioxythiophene). An investigation by X-ray absorption and X-ray photoelectron spectroscopy. Chemical Physics, 1995. 194(1): p. 207–213.

Guillén, C. and J. Herrero, High-Performance Electrodes for Organic Photovoltaics, in Organic Photovoltaics. 2009, Wiley-VCH Verlag GmbH & Co. KGaA. p. 399–423.

Züfle, S., et al., An Effective Area Approach to Model Lateral Degradation in Organic Solar Cells. Advanced Energy Materials, 2015. 5(20): p. 1500835-n/a.

Huang, L.-C., et al., Self-assembled multilayers of modified ITO in polymer solar cells by soft-imprinting. Soft Matter, 2012. 8(5): p. 1467–1472.

Gao, Y., et al., Anode modification of inverted polymer solar cells using graphene oxide. Applied Physics Letters, 2010. 97(20): p. 203306.

Chang, D.W., et al., Graphene in photovoltaic applications: organic photovoltaic cells (OPVs) and dye-sensitized solar cells (DSSCs). J. Mater. Chem. A, 2014. 2(31): p. 12136–12149.

Wang, X., L. Zhi, and K. Müllen, Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett, 2008. 8(1): p. 323–327.

Eda, G., G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nano, 2008. 3(5): p. 270–274.

Liu, J., M. Durstock, and L. Dai, Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells. Energy Environ. Sci., 2014. 7(4): p. 1297–1306.

Dreyer, D.R., et al., The chemistry of graphene oxide. Chem. Soc. Rev., 2010. 39(1): p. 228–240.

Mao, S., H. Pu, and J. Chen, Graphene oxide and its reduction: modeling and experimental progress. RSC Adv, 2012. 2(7): p. 2643–2662.

Nair, R.R., et al., Fine Structure Constant Defines Visual Transparency of Graphene. Science, 2008. 320(5881): p. 1308.

Balasubramanian, N. and A. Subrahmanyam, Studies on Evaporated Indium Tin Oxide (ITO)/Silicon Junctions and an Estimation of ITO Work Function. Journal of The Electrochemical Society, 1991. 138(1): p. 322–324.


Mühlbacher, D., et al., High Photovoltaic Performance of a Low-Bandgap Polymer. Advanced Materials, 2006. 18(21): p. 2884–2889.

Scharber, M.C., et al., Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency. Advanced Materials, 2006. 18(6): p. 789–794.

Querner, C., et al., Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals. Phys. Chem. Chem. Phys., 2005. 7(17): p. 3204–3209.

Wu, R., et al., Control of the oxidation level of graphene oxide for high efficiency polymer solar cells. RSC Adv, 2015. 5(61): p. 49182–49187.

Sygellou, L., et al., Work Function Tuning of Reduced Graphene Oxide Thin Films. J. Phys. Chem. C, 2016. 120(1): p. 281–290.
Published
2019-01-11
How to Cite
MADSUHA, Alfian F.; SOFYAN, Nofrijon; YUWONO, A. H.. Integrasi Grafin Oksida Berbasis Larutan sebagai Material Penghantar Lubang pada Sel Surya Hibrid Bulk-Heterojunction (BHJ). Prosiding Seminar Nasional Teknoka, [S.l.], v. 3, p. M23-M26, jan. 2019. ISSN 2580-6408. Available at: <https://journal.uhamka.ac.id/index.php/teknoka/article/view/2908>. Date accessed: 24 jan. 2019. doi: https://doi.org/10.22236/teknoka.v3i0.2908.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.