Perbandingan Algoritma Naive Bayes Classifier dengan K-Nearest Neighbor (K-NN) Pada Ulasan Aplikasi Youtube Di PlayStore

Authors

  • Azmi Ulwan Dasuki Universitas Muhammadiyah Prof. DR. HAMKA
  • Erizal Universitas Muhammadiyah Prof. DR. HAMKA

DOI:

https://doi.org/10.22236/teknoka.v9i1.17835

Keywords:

Youtube, Analisis Sentimen, Naive Bayes Classifier, K-NN

Abstract

Youtube is an application that is still widely used today where Youtube users can watch and post various types of videos ranging from entertainment, news, and insights for free. With the large number of Youtube application users, more and more people are giving comments ranging from positive to negative comments on the Youtube application on the Google Play Store. The purpose of this study is to analyze the sentiment of Youtube application users based on reviews on the Google Play Store. This study went through the stages of data extraction, data labeling, text preprocessing, and also the classification of the Naive Bayes Classifier and K-NN algorithms. After going through the Naive Bayes Classifier and K-NN classification stages, namely the K-NN algorithm produced 81,26% with a precision value of 83,29% and a recall value of 96,29% while the Naive Bayes Classifier algorithm only produced an accuracy value of 78,24%, precision of 82,83% and recall of 92,43%. This means that from the results of the sentiment analysis, the K-NN algorithm is superior to the Naive Bayes Classifier algorithm and public opinion towards the YouTube application is more negative than positive.

Downloads

Download data is not yet available.

References

A. Roshid, S. Kom, M. Kom, R. Imada, S. Kom, dan M. Kom, “Analisis Sentimen Masyarakat Terhadap Mainan Anak ‘Lato-Lato’ Menggunakan Metode Support Vector Machine (Svm) Pada Media Sosial Youtube,” vol. 8, no. 2502, 2023.

Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, dan Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” komtekinfo, hlm. 1–7, Jan 2023, doi: 10.35134/komtekinfo.v10i1.330.

A. Putri dkk., “Komparasi algoritma K-NN, naive bayes dan SVM untuk prediksi kelulusan mahasiswa tingkat akhir: comparison of K-NN, naive bayes and SVM algorithms for final-year student graduation prediction,” MALCOM, vol. 3, no. 1, hlm. 20–26, Mei 2023, doi: 10.57152/malcom.v3i1.610.

D. F. Zhafira, B. Rahayudi, dan I. Indriati, “Analisis Sentimen Kebijakan Kampus Merdeka Menggunakan Naive Bayes dan Pembobotan TF-IDF Berdasarkan Komentar pada Youtube,” JUST-SI, vol. 2, no. 1, Agu 2021, doi: 10.25126/justsi.v2i1.24.

L. Indrianingsih dan B. Budiarsih, “Analisis hukum konten negatif di platform youtube di indonesia,” HUM SOC POL, vol. 2, no. 3, hlm. 892–916, Des 2022, doi: 10.53363/bureau.v2i3.71.

R. Savira, A. Solichin, dan M. Syafrullah, “Analisis sentimen pada twitter terhadap kenaikan bbm 2022 dengan lexicon dan support vector machine,” vol. 2, 2023.

R. A. Saputra, D. P. Ray, dan F. Irwiensyah, “Analisis Sentimen Aplikasi Tokocrypto Berdasarkan Ulasan Pada Google Play Store Menggunakan Metode Naïve Bayes”.

A. Setiawan, “Perbandingan Penggunaan Jarak Manhattan, Jarak Euclid, dan Jarak Minkowski dalam Klasifikasi Menggunakan Metode KNN pada Data Iris,” juses, vol. 5, no. 1, hlm. 28–37, Mei 2022, doi: 10.24246/juses.v5i1p28-37.

J. W. Iskandar dan Y. Nataliani, “Perbandingan Naïve Bayes, SVM, dan k- NN untuk Analisis Sentimen Gadget Berbasis Aspek,” RESTI, vol. 5, no. 6, hlm. 1120–1126, Des 2021, doi: 10.29207/resti.v5i6.3588.

S. K. P. Loka dan A. Marsal, “Perbandingan Algoritma K-Nearest Neighbor dan Naïve Bayes Classifier untuk Klasifikasi Status Gizi Pada Balita: Comparison Algorithm of K- Nearest Neighbor and Naïve Bayes Classifier for Classifying Nutritional Status in Toddlers,” MALCOM, vol. 3, no. 1, hlm. 8–14, Mei 2023, doi: 10.57152/malcom.v3i1.474.

C. A. A. Soemedhy, N. Trivetisia, N. A. Winanti, D. P. Martiyaningsih, T. W. Utami, dan S. Sudianto, “Analisis Komparasi Algoritma Machine Learning untuk Sentiment Analysis (Studi Kasus: Komentar YouTube ‘Kekerasan Seksual’),” JPIT, vol. 7, no. 2, hlm. 80–84, Mei 2022, doi: 10.30591/jpit.v7i2.3547.

S. M. Harahap dan R. Kurniawan, “Analisis Sentimen Komentar Youtube Terhadap Food Vlogger Dengan Menggunakan Metode Naïve Bayes,” MEANS, hlm. 87–96, Jun 2024, doi: 10.54367/means.v9i1.3912.

A. Karimah, G. Dwilestari, dan M. Mulyawan, “Analisis sentimen komentar video mobil listrik di platform youtube dengan metode naive bayes,” jati, vol. 8, no. 1, hlm. 767–737, Mar 2024, doi: 10.36040/jati.v8i1.8373.

H. Hidayat, F. Santoso, dan L. F. Lidimillah, “Analisis Sentimen Pengguna YouTube Tentang Rohingya Menggunakan Algoritma SVM (Support Vector Machine),” G-Tech, vol. 8, no. 3, hlm. 1729–1738, Jul 2024, doi: 10.33379/gtech.v8i3.4497.

V. N. Romadina, O. Juwita, dan P. Pandunata, “Analisis Komentar Toxic Terhadap Informasi COVID-19 pada YouTube Kementerian Kesehatan Menggunakan Metode Naïve Bayes Classifier,” INFORMAL, vol. 9, no. 1, hlm. 92, Mei 2024, doi: 10.19184/isj.v9i1.48126.

Published

2024-12-29

How to Cite

Azmi Ulwan Dasuki, & Erizal. (2024). Perbandingan Algoritma Naive Bayes Classifier dengan K-Nearest Neighbor (K-NN) Pada Ulasan Aplikasi Youtube Di PlayStore. Prosiding Seminar Nasional Teknoka, 9(1), 102–110. https://doi.org/10.22236/teknoka.v9i1.17835