Pembangkit Listrik Menggunakan Generator Termoelektrik pada Dinding Model Bangunan

Authors

  • Rifky Universitas Muhammadiyah Prof. DR. HAMKA
  • Reza Ferizal Akbar Universitas Muhammadiyah Prof. DR. HAMKA
  • Oktarina Heriyani Universitas Muhammadiyah Prof. DR. HAMKA
  • Riyan Ariyansah Universitas Muhammadiyah Prof. DR. HAMKA
  • Akhmad Rizal Dzikrillah Universitas Muhammadiyah Prof. DR. HAMKA

DOI:

https://doi.org/10.22236/teknoka.v9i1.17445

Keywords:

termoelektrik, pembangkit, listrik, dinding, bangunan

Abstract

This research was initiated by the idea of making building materials and/or building components/parts into sources of electrical energy, especially on the roof and walls of buildings. Building roofs and walls have the potential as a means of utilizing solar energy into electrical energy with a thermoelectric generator (TEG) converter. Therefore, the aim of this research is to obtain the performance of thermoelectric generators with series and parallel circuits as power generators on the walls of building models. The research methodology used is experimental which begins with designing research equipment consisting of a building model frame and a thermoelectric system arrangement. In this research, a series and parallel TEG circuit was compared. Both sets of TEG systems have aluminum attached to absorb heat from the sun on the hot side of the TEG and a water block made of aluminum is attached to the cold side of the TEG. Styrofoam is attached to the surrounding sides between the TEG modules as a thermal insulator. The parameters in this research consist of independent variables, moderator variables and dependent variables. The independent variables are the temperature of the hot side of the TEG and the temperature of the cold side of the TEG. The moderator variables are good water temperature, water discharge, water temperature entering the waterblock, water temperature leaving the waterblock. Meanwhile, the dependent variables are electric current strength, electric voltage, electric power, and TEG efficiency. The research results showed that the maximum electric current was 0.54 A and the maximum electric voltage was 0.08 V. The maximum electric power as output power from the TEG system was 0.0432 W and the average thermoelectric efficiency was 4%.

Downloads

Download data is not yet available.

References

Y. S. Rifky, Gaos, “Pengembangan Model Pendingin Kabin City Car Bertenaga Surya Menggunakan Photovoltaics ( PV ) dan Thermoelectric ( TEC ),” vol. 10, no. 1, pp. 34–40, 2019.

Z. Lubis, T. Uhsg, and T. B. Sitorus, “Analisa Kinerja Sistem Pendingin Peltier yang Menggunakan Sel PV dengan Sumber Energi Radiasi Matahari,” vol. 9, no. 2, pp. 166–173, 2016.

A. I. Ramadhan et al., “Analisis Desain Sistem Pembangkit Listrik Tenaga Surya Kapasitas 50 WP,” Tek. 37 (2), 2016, 59-63, vol. 11, no. 2, pp. 61–78, 2016.

Y. Prasetyo et al., “Karakteristik Termoelektrik TEC Bervariasi Tipe dengan Variasi Pembebanan Resistor,” vol. 02, no. 01, pp. 37–41, 2019.

Y. Latief, M. A. Berawi, A. B. Koesalamwardi, L. Sagita, and A. Herzanita, “Cost Optimum Design of A Tropical Near Zero Energy House (nZEH),” Int. J. Technol., vol. 10, no. 2, pp. 376–385, 2019.

S. Salamaat, “Zero Energy Building - A Review of Definition and Design Strategies,” no. December, 2015.

M. A. Zoui, S. Bentouba, J. G. Stocholm, and M. Bourouis, “A Review On Thermoelectric Generators: Progress and Applications,” Energies, vol. 13, no. 14, 2020, doi: 10.3390/en13143606.

S. Sukmajati and M. Hafidz, “Perancangan dan Analisi Pembangkit Listrik Tenaga Surya Kapasitas 10 MW On Grid Di Yogyakarta,” 2015.

E. Sinduningrum, P. Studi, T. Elektro, and F. Teknik, “Penerapan Pembangkit Listrik Tenaga Surya di Lahan Pertanian Terpadu Ciseeng Parung Bogor,” vol. 4, no. 2502, 2019.

H. A. S and M. Bastomi, “Analisis Pengaruh Perubahan Temperatur Panel terhadap Daya dan Efisiensi Keluaran Sel Surya Poycrystalline,” J. Ilm. Tek. Mesin, vol. 11, no. 1, p. 33, 2019.

M. Rifan, S. Hp, M. Shidiq, R. Yuwono, H. Suyono, and A. P. Cell, “Optimasi Pemanfaatan Energi Listrik Tenaga Matahari di Jurusan Teknik Elektro Universitas,” vol. 6, no. 1, pp. 44–48, 2012.

N. Putra, R. A. Koestoer, M. Adhitya, A. Roekettino, and B. Trianto, “Kendaraan Hibrid,” Makara Teknol., vol. 13, no. 2, pp. 53–58, 2009.

A. Tranggono, A. Salim, Y. Prasetyo, and Y. A. Fakhrudin, “Study of Effect Comparison Thermoelectric Characteristics of TEC and TEG by Considering the Difference in Temperature and Variable Resistant,” Int. Res. J. Adv. Eng. Sci., vol. 3, no. 4, pp. 225–228, 2018.

Wardoyo, “Studi Karakteristik Pembangkit Listrik Thermoelektrik Melalui Pemanfaatan Panas Knalpot Sepeda Motor Sport 150 cc .,” no. April, pp. 70–75, 2016.

U. S. Utara, “Universitas Sumatera Utara 4 Termoelektrik,” pp. 4–16, 2003.

P. D. Y. Ismail and A. Al-Askalany, “Thermoelectric Devices,” no. March, 2014.

U. Lachish, “Thermoelectric Effect Peltier Seebeck and Thomson,” no. 1, pp. 1–12, 2017.

M. Nair and B. Tripathi, “Experimental Studies on Thermoelectric Refrigeration System,” no. April, 2019.

Z. Zhang, Y. Zhang, X. Sui, W. Li, and D. Xu, “Performance of Thermoelectric Power-Generation System for Sufficient Recovery and Reuse of Heat Accumulated at Cold Side of TEG with Water-Cooling Energy Exchange Circuit,” Energies, vol. 13, no. 21, 2020.

Heri Kiswanto, “Analisis pada Tegangan, Arus dan Daya Listrik pada Lab Listrik Penelitian Elektro Univ.Yogyakarta,” 2006.

U. M. Rifanti, T. N. Padilah, and I. Widyaningrum, “Sistem Dinamik Arus Listrik dengan Persamaan Diferensial Metode Koefisien Tak Tentu,” J. Mat. Integr., vol. 15, no. 1, p. 1, 2019.

M. Yusuf, “Unjuk Kinerja Pembangkit Energi Elektrik Memanfaatkan Limbah Panas Mesin Mobil City Car Menggunakan Modul Termoelektrik Cooler,” pp. 1–6, 2018.

R. I. Mainil and G. Andrapica, “Pengaruh Laju Aliran Air Pendingin terhadap Kinerja Pembangkit Listrik Berbasis Thermoelectric Generator ( Teg ),” vol. 19, no. 1, pp. 36–41, 2020.

H. Lee, Heat Sinks , Thermoelectrics , Heat Pipes , Compact Heat Exchangers , and Solar Cells. 2010.

V. Jovanovic, S. Ghamaty, and J. C. Bass, “New Thermoelectric Materials and Applications,” Intersoc. Conf. Therm. Thermomechanical Phenom. Electron. Syst. ITHERM, pp. 1159–1169, 2012.

A. K. Mainil, A. Aziz, and M. Akmal, “Portable Thermoelectric Cooler Box Performance with Variation of Input Power and Cooling Load,” Aceh Int. J. Sci. Technol., vol. 7, no. 2, pp. 85–92, 2018, doi: 10.13170/aijst.7.2.8722.

H. Simatupang, “Karakteristik Thermoelektrik untuk Pembangkit Listrik Tenaga Surya dengan Pendingin Air,” 2009.

E. D. Magdalena and L. Tondobala, “Implementasi Konsep Zero Energy Building (Zeb) Dari Pendekatan Eco-Friendly pada Rancangan Arsitektur,” Media Matrasain, vol. 13, no. 1, pp. 1–15, 2016.

A. Muhaisen, “Effect of Wall Thermal Properties on the Energy Consumption of Buildings in the Gaza Strip,” Int. Sustain. Build. Symp., vol. 2, no. August, 2015.

D. W. I. H. Oktorina, “Kajian Karakteristik Modul Termoelektrik untuk Sistem Penyimpanan Dingin,” 2006.

J. Yeonardy, “Characteristic of Air Cooled Parallel Faculty of Science and Tecnology,” 2008.

Published

2024-12-27

How to Cite

Rifky, Reza Ferizal Akbar, Oktarina Heriyani, Riyan Ariyansah, & Akhmad Rizal Dzikrillah. (2024). Pembangkit Listrik Menggunakan Generator Termoelektrik pada Dinding Model Bangunan. Prosiding Seminar Nasional Teknoka, 9(1), 1–14. https://doi.org/10.22236/teknoka.v9i1.17445