Sentiment Analysis of Public Towards the Children's Toy 'Lato-Lato' Using the Support Vector Machine (SVM) Method on YouTube Social Media
Keywords:
analisis sentimen, support vector machine, youtube, lato-lato, sentiment analisist, support vector machine, YouTube, clackersAbstract
Lato-lato is a children's toy that has gone viral in Indonesia. This children's toy is quite controversial in Indonesian society because this toy creates quite a noise when played but also has several positive impacts for children. The purpose of this research is to analyze the sentiment of Indonesian people towards lato-lato toys from video comments on YouTube social media. The processes carried out are data crawling, preprocessing, normalization, labeling, and SVM classification. After the SVM classification process with a linear kernel, an accuracy of 81% was obtained. For positive sentiment, the precision is 80%, recall 85% and f1-score 82%, for negative sentiment, the precision is 83%, recall 77% and f1-score 80%. From the results of the sentiment analysis, more Indonesians respond positively to lato-lato, which indicates that Indonesians see lato-lato as not a problem and there are many positive benefits from lato-lato.
Downloads
References
A. Mahmudan, “Pengguna Youtube Indonesia Terbesar Ketiga di Dunia pada 2022,” 2022. https://dataindonesia.id/internet/detail/pengguna-youtube-indonesia-terbesar-ketiga-di-dunia-pada-2022 (accessed Jan. 13, 2023).
Chely Aulia Misrun, E. Haerani, M. Fikry, and E. Budianita, “Analisis sentimen komentar youtube terhadap Anies Baswedan sebagai bakal calon presiden 2024 menggunakan metode naive bayes classifier,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 4, no. 1, pp. 207–215, 2023, doi: 10.37859/coscitech.v4i1.4790.
L. Zain, “Sejarah Lato-Lato yang Sedang Tren, Bukan dari Indonesia,” 2023. https://www.idntimes.com/science/discovery/laili-zain-damaika-1/sejarah-lato-lato?page=all (accessed May 06, 2023).
H. Syah and A. Witanti, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (Svm),” J. Sist. Inf. dan Inform., vol. 5, no. 1, pp. 59–67, 2022, doi: 10.47080/simika.v5i1.1411.
V. Kevin, S. Que, A. Iriani, and H. D. Purnomo, “Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization ( Online Transportation Sentiment Analysis Using Support Vector Machine Based on Particle Swarm Optimization ),” vol. 9, no. 2, pp. 162–170, 2020.
I. Verawati and B. S. Audit, “Algoritma Naïve Bayes Classifier Untuk Analisis Sentiment Pengguna Twitter Terhadap Provider By.u,” J. Media Inform. Budidarma, vol. 6, no. 3, p. 1411, 2022, doi: 10.30865/mib.v6i3.4132.
H. Tuhuteru and A. Iriani, “Analisis Sentimen Perusahaan Listrik Negara Cabang Ambon Menggunakan Metode Support Vector Machine dan Naive Bayes Classifier,” J. Inform. J. Pengemb. IT, vol. 3, no. 3, pp. 394–401, 2018, doi: 10.30591/jpit.v3i3.977.
B. Laurensz and Eko Sediyono, “Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 2, pp. 118–123, 2021, doi: 10.22146/jnteti.v10i2.1421.
R. Aditya, “Fakta Lato-lato, Begini Asal-usul hingga Manfaat Mainan Anak Viral di Media Sosial,” 2022. https://www.suara.com/news/2022/12/24/114007/fakta-lato-lato-begini-asal-usul-hingga-manfaat-mainan-anak-viral-di-media-sosial (accessed Jan. 14, 2022).
D. V. Putsanra, “Apa Itu Lato Lato, Berasal dari Mana, dan Siapa Penciptanya?,” 2022. https://tirto.id/apa-itu-lato-lato-berasal-dari-mana-dan-siapa-penciptanya-gAq7 (accessed Feb. 13, 2023).
D. Mualfah, Ramadhoni, R. Gunawan, and D. Mulyadipa Suratno, “Analisis Sentimen Komentar YouTube TvOne Tentang Ustadz Abdul Somad Dideportasi Dari Singapura Menggunakan Algoritma SVM,” J. Fasilkom, vol. 13, no. 01, pp. 72–80, 2023, doi: 10.37859/jf.v13i01.4920.
Iin Ernawati, “Naïve Bayes Classifier Dan Support Vector Machine Sebagai Alternatif Solusi Untuk Text Mining,” JTIP, vol. 12, no. 2, pp. 1–7, 2019.
Z. Alhaq, A. Mustopa, S. Mulyatun, and J. D. Santoso, “Penerapan Metode Support Vector Machine Untuk Analisis Sentimen Pengguna Twitter,” J. Inf. Syst. Manag., vol. 3, no. 2, pp. 44–49, 2021, doi: 10.24076/joism.2021v3i2.558.
E. R. Indriyani, P. Paradise, and M. Wibowo, “Perbandingan Metode Naïve Bayes dan Support Vector Machine Untuk Analisis Sentimen Terhadap Vaksin Astrazeneca di Twitter,” J. Media Inform. Budidarma, vol. 6, no. 3, p. 1545, 2022, doi: 10.30865/mib.v6i3.4220.
F. Romadoni, Y. Umaidah, and B. N. Sari, “Text Mining Untuk Analisis Sentimen Pelanggan Terhadap Layanan Uang Elektronik Menggunakan Algoritma Support Vector Machine,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 9, no. 2, pp. 247–253, 2020, doi: 10.32736/sisfokom.v9i2.903.
M. R. A. Yudianto, A. Rahim, P. Sukmasetya, and R. A. Hasani, “Perbandingan Metode Support Vector Machine Dengan Metode Lexicon Dalam Analisis Sentimen Bahasa Indonesia,” J. Teknol. Inf., vol. 6, no. 1, pp. 7–13, 2022, [Online]. Available: https://github.com/fajri91/InSet.
D. D. Kurnianto and S. Waluyo, “Pajak Diperiksa Kpk Pada Youtube Menggunakan Metode K-Nearest Neighbor Analysis Of Public Sentiment Towards Former Tax Officials Examined By The Kpk On Youtube Using The K- Nearest Neighbor Method,” Senafti, vol. 2, no. September, pp. 632–641, 2023.
A. N. Ulfah and M. K. Anam, “Analisis Sentimen Hate Speech Pada Portal Berita Online Menggunakan Support Vector Machine (SVM),” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 1, pp. 1–10, 2020, doi: 10.35957/jatisi.v7i1.196.
F. J. Wahidna and P. Nerisafitra, “Analisis Sentimen Pengguna Sistem Pay Later Menggunakan Support Vector Machine Metode Pembobotan Lexicon,” J. Informatics Comput. Sci., vol. 04, pp. 334–343, 2023, doi: 10.26740/jinacs.v4n03.p334-343.
W. Bourequat and H. Mourad, “Sentiment Analysis Approach for Analyzing iPhone Release using Support Vector Machine,” Int. J. Adv. Data Inf. Syst., vol. 2, no. 1, pp. 36–44, 2021, doi: 10.25008/ijadis.v2i1.1216.
D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,” Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, pp. 1–11, 2020, doi: 10.21107/edutic.v7i1.8779.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Prosiding Seminar Nasional Teknoka
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.