The Influence of Air and Water Mass Ratio on the Performance of Forced Draft Wet Cooling with Perforated Inclined Splash Fill

Authors

  • Khairul Umurani Muhammadiyah University of North Sumatra
  • Ahmad Syuhada Syiah Kuala University
  • M.I.. Maulana Syiah Kuala University
  • Zahrul Fuadi Syiah Kuala University

Keywords:

sudut kemiringan, unjuk kerja, perforsi, personal computer, automation, future trends, expert systems (keywords 3 to 5 words)

Abstract

This study aims to experimentally analyse the performance of a forced wet cooling tower (WTC) using multilevel inclined perforated splash fill. The hot water temperature is set at 60 C; Packing has an inclination angle of 15o, 20o, 25o and a perforation ratio of 2.6%, which consists of five levels of galvanised plate fill. The water flow rate is ± 0.0917 kg/s, and the five variations of air flow rate are 0.02033, 0.02631, 0.02995, 0.03770, and 0.04261 kg/s. The inlet hot water temperature is 60 C. In this study, it can be seen that the ratio of water mass and air mass affects the performance of the cooling tower

Downloads

Download data is not yet available.

Author Biographies

Khairul Umurani, Muhammadiyah University of North Sumatra

Muhammadiyah Sumatera Utara University

Ahmad Syuhada, Syiah Kuala University

Syiah Kuala University,  Banda Aceh 23111, Indonesia

M.I.. Maulana, Syiah Kuala University

Syiah Kuala University, Banda Aceh 23111, Indonesia

Zahrul Fuadi, Syiah Kuala University

Department of Mechanical and Industrial Engineering, Syiah Kuala University

References

Range air pendingin, R, menurun dengan peningkatan rasio aliran massa air-udara, L/G,. Nilai R maksimum terjadi pada sudut inlinasi 15o

Laju kehilangan penguapan air meningkat dengan menurunnya rasio L/G. Laju penguapan maksimum terjdi pada sudut inklinasi 15o

Efektivitas cooling tower meningkat dengan menurunnya rasio L/G. Efektivitas maksimum terjdi pada sudut inklinasi 15o

KEPUSTAKAAN

R. McElveen, K. Lyles, B. Martin, and W. Wasserman, “Reliability of Cooling Tower Drives: Improving Efficiency with New Motor Technology,” IEEE Ind. Appl. Mag., vol. 18, no. 6, pp. 12–19, 2012, doi: 10.1109/MIAS.2012.2210090.

Z. Zhang, M. Gao, Z. Dang, S. He, and F. Sun, “An exploratory research on performance improvement of super-large natural draft wet cooling tower based on the reconstructed dry-wet hybrid rain zone,” Int. J. Heat Mass Transf. J., vol. 142, pp. 1–13, 2019.

C. G. Cutillas, J. R. Ramírez, and M. L. Miralles, “Optimum design and operation of an HVAC cooling tower for energy and water conservation,” Energies, vol. 10, no. 3, pp. 1–27, 2017, doi: 10.3390/en10030299.

R. K. Singla, K. Singh, and R. Das, “Tower characteristics correlation and parameter retrieval in wet-cooling tower with expanded wire mesh packing,” Appl. Therm. Eng., vol. 96, pp. 240–249, 2016, doi: https://doi.org/10.1016/j.applthermaleng.2015.11.063.

A. Zargar et al., “Numerical analysis of a counter-flow wet cooling tower and its plume,” Int. J. Thermofluids, vol. 14, no. February, 2022.

B. K. Naik and P. Muthukumar, “A novel approach for performance assessment of mechanical draft wet cooling towers,” Appl. Therm. Eng., vol. 121, pp. 14–26, 2017, doi: https://doi.org/10.1016/j.applthermaleng.2017.04.042.

P. Navarro, J. Ruiz, A. S. Kaiser, and M. Lucas, “Effect of fill length and distribution system on the thermal performance of an inverted cooling tower,” Appl. Therm. Eng., vol. 231, p. 120876, 2023, doi: https://doi.org/10.1016/j.applthermaleng.2023.120876.

K. Singh and R. Das, “An experimental and multi-objective optimization study of a forced draft cooling tower with different fills,” Energy Convers. Manag., vol. 111, pp. 417–430, 2016, doi: 10.1016/j.enconman.2015.12.080.

S. Shetty, S. S. Salins, and S. Kumar, “Influence of packing configuration and flow rate on the performance of a forced draft wet cooling tower,” J. Build. Eng. j, vol. 72, no. February, pp. 1–20, 2023.

J. Yang, Z. Jia, H. Guan, S. He, and M. Gao, “Influence of three different pitches fillings on the cooling performance of wet cooling towers under crosswind,” Appl. Therm. Eng., vol. 220, p. 119760, 2023, doi: https://doi.org/10.1016/j.applthermaleng.2022.119760.

P. J. Grobbelaar, H. C. R. Reuter, and T. P. Bertrand, “Performance characteristics of a trickle fill in cross- and counter- flow configuration in a wet-cooling tower,” Appl. Therm. Eng., vol. 50, pp. 475–484, 2013.

. Umurani, K., Rudi Nasution, A., & D. I. (2021). Perpindahan Panas Dan Penurunan Tekanan Pada Saluran Segiempat Dengan Rusuk V 90 Derajat. Jurnal Rekayasa Material, Manufaktur Dan Energi, 4(1), 37–46.

. Umurani, K., & Muharnif, M. (2019). Pengaruh Diameter Lubang Pembangkit Vorteks Winglet Melengkung Terhadap Unjuk Kerja Apk Tipe Kompak Studi Eksperimental. Jurnal Rekayasa Material, Manufaktur Dan Energi, 2(1), 84–93. https://doi.org/10.30596/rmme.v2i1.3072

Y. Zhou, K. Wang, M. Gao, Z. Dang, S. He, and F. Sun, “Experimental study on the drag characteristic and thermal performance of non-uniform fi llings for wet cooling towers under crosswind conditions,” Appl. Therm. Eng., vol. 140, no. May, pp. 398–405, 2018.

Y. Zhou, M. Gao, G. Long, Z. Zhang, Z. Dang, and S. He, “Experimental study regarding the effects of forced ventilation on the thermal performance for super-large natural draft wet cooling towers,” Appl. Therm. Eng., vol. 155, no. March, pp. 40–48, 2019.

Z. Cui, Q. Du, J. Gao, and R. Bie, “Optimum design of a deep cooling tower for waste heat and water recovery from humid flue gas,” Case Stud. Therm. Eng., vol. 49, no. May, p. 103317, 2023, doi: 10.1016/j.csite.2023.103317.

S. Kumar et al., “Estimation of performance parameters of a counter flow cooling tower using biomass packing,” Therm. Sci. Eng. Prog. J., vol. 44, no. February, pp. 1–11, 2023.

M. Lemouari, M. Boumaza, and A. Kaabi, “Experimental analysis of heat and mass transfer phenomena in a direct contact evaporative cooling tower,” Energy Convers. Manag., vol. 50, no. 6, pp. 1610–1617, 2009, doi: 10.1016/j.enconman.2009.02.002.

P. Navarro, J. Ruiz, M. Hernández, A. S. Kaiser, and M. Lucas, “Critical evaluation of the thermal performance analysis of a new cooling tower prototype,” Appl. Therm. Eng., vol. 213, no. January, p. 118719, 2022, doi: 10.1016/j.applthermaleng.2022.118719.

P. Imani-mofrad, Z. Heris, and M. Shanbedi, “Experimental investigation of filled bed effect on the thermal performance of a wet cooling tower by using ZnO / water nanofluid,” Energy Convers. Manag. J., vol. 127, pp. 199–207, 2016.

K. Singh and R. Das, “A feedback model to predict parameters for controlling the performance of a mechanical draft cooling tower,” Appl. Therm. Eng., vol. 105, pp. 519–530, 2016, doi: 10.1016/j.applthermaleng.2016.03.030.

S. T. Dehaghani, H. Ahmadikia, and H. Ahmadikia, “Retrofit of a wet cooling tower in order to reduce water and fan power consumption using a wet / dry approach,” Appl. Therm. Eng., 2017, doi: http://dx.doi.org/ 10.1016/j.applthermaleng.2017.07.069.

B. Yang, X. Liu, Z. Zhao, J. Song, and C. Chen, “The analysis of the influence of packing and total pressure on cooling performance of the cooling tower,” in IOP Conference Series: Earth and Environmental Science, 2018, vol. 170, no. 3, pp. 1–8. doi: 10.1088/1755-1315/170/3/032020.

J. Liao, X. Xie, H. Nemer, D. E. Claridge, and C. H. Culp, “A simplified methodology to optimize the cooling tower approach temperature control schedule in a cooling system,” Energy Convers. Manag., vol. 199, no. June, p. 111950, 2019, doi: 10.1016/j.enconman.2019.111950.

L. Jiang et al., “The effects of water droplet diameter distribution in the rain zone on the cooling capacity and water-splashing noise for natural draft wet cooling towers,” Int. J. Therm. Sci., vol. 164, no. August 2020, 2021, doi: 10.1016/j.ijthermalsci.2021.106875.

Z. Zhang, D. Zhang, Q. Han, F. Wu, M. Gao, and S. He, “Numerical simulation on the three kinds of water droplet diameter treatments in rain zone of wet cooling towers,” Int. J. Heat Mass Transf., vol. 170, pp. 1–11, 2021.

D. Lyu, F. Sun, and Y. Zhao, “Impact mechanism of different fill layout patterns on the cooling performance of the wet cooling tower with water collecting devices,” Appl. Therm. Eng., vol. 110, pp. 1389–1400, 2017, doi: https://doi.org/10.1016/j.applthermaleng.2016.08.190.

K. Chen, F. Sun, L. Zhang, X. Chen, and X. Zhang, “A sensitivity-coefficients method for predicting thermal performance of natural draft wet cooling towers under crosswinds,” vol. 206, no. August 2021, 2022.

A. V Dmitriev, I. N. Madyshev, V. V Kharkov, O. S. Dmitrieva, and V. E. Zinurov, “Experimental investigation of fill pack impact on thermal-hydraulic performance of evaporative cooling tower,” Therm. Sci. Eng. Prog., vol. 22, p. 100835, 2021, doi: https://doi.org/10.1016/j.tsep.2020.100835.

C. Lee and Y. J. Wang, “A novel method to derive formulas for computing the wet-bulb temperature from relative humidity and air temperature,” Meas. J. Int. Meas. Confed., vol. 128, pp. 271–275, 2018, doi: 10.1016/j.measurement.2018.06.042.

R. Ramkumar and A. Ragupathy, “Optimization of cooling tower performance with different types of packings using Taguchi approach,” J. Brazilian Soc. Mech. Sci. Eng., vol. 37, no. 3, pp. 929–936, 2015, doi: 10.1007/s40430-014-0216-1.

H. Ma, L. Cai, F. Si, and J. Wang, “Exploratory research on annular-arranged moist media to improve cooling capacity of natural draft dry cooling tower and thermo-flow characteristics of its radiators,” Int. J. Heat Mass Transf., vol. 172, p. 121123, 2021, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121123.

K. Singh and R. Das, “An experimental and multi-objective optimization study of a forced draft cooling tower with different fills,” Energy Convers. Manag., vol. 111, pp. 417–430, 2016, doi: https://doi.org/10.1016/j.enconman.2015.12.080.

B. K. Naik, V. Choudhary, P. Muthukumar, and C. Somayaji, “Performance Assessment of a Counter Flow Cooling Tower - Unique Approach,” in Energy Procedia, 2017, vol. 109, no. November 2016, pp. 243–252. doi: 10.1016/j.egypro.2017.03.056.

H. Ma, L. Cai, and F. Si, “Numerical study on the effects of layout compactness of the annular-aligned moist media on thermo-hydraulic performance of an indirect dry cooling tower,” Appl. Therm. Eng., vol. 213, p. 118649, 2022, doi: https://doi.org/10.1016/j.applthermaleng.2022.118649.

Published

2023-12-13

How to Cite

Khairul Umurani, Ahmad Syuhada, M.I. Maulana, & Zahrul Fuadi. (2023). The Influence of Air and Water Mass Ratio on the Performance of Forced Draft Wet Cooling with Perforated Inclined Splash Fill. Prosiding Seminar Nasional Teknoka, 8, 35–41. Retrieved from https://journal.uhamka.ac.id/index.php/teknoka/article/view/13852