Main Article Content


Biomedical research requires suitable model organisms to be able to understand the pathogenesis of disease at the cellular and molecular level and the suitability of systems for the development and testing of new therapies. The choice of model organisms for biomedical research depends very much on the research objectives. Basically, the selection of model organisms is based on several aspects, namely: biological, technical and historical aspects. The general criteria for selecting model organisms are: small size, fast reproduction time, low and easy maintenance, easy experimental techniques, complete basic information. The development of research using animal models further leads to the level of genetic functional conservation in the basic processes of cell biology between mammals and invertebrates such as fruit flies (Drosophila melanogaster) and nematode worms (Caenorhabditis elegans). However, there are significant limitations between mammals and invertebrates, among others due to differences in organ systems and their development, so now widely used zebra fish (Danio rerio) as model organisms that bridge between invertebrates and vertebrates. In addition to these reasons there are several other scientific reasons that make zebra fish a superior organism model for biomedical research, namely: having a high homology with humans (75%), transparent embryos, high levels of fecundity, fast embryogenesis, relatively fast life span , procurement and maintenance is relatively inexpensive, complete basic information and genetic information (whole genome sequencing), has a cardiovascular system, nerves, immune system and digestive system similar to mammals, sensitive to environmental changes so that many bio-indicators are used for toxicity testing and testing and development drug.

Article Details

How to Cite
Khotimah, H., & M. Muljohadi Al. (2020). Ikan Zebra (Danio rerio) sebagai Binatang Model pada Penelitian Biomedis dan Cara Pemeliharaannya. Sanus Medical Journal, 1(1), 8-13.


    Ariani, Niati, R., Khotimah, Ali, M.M., 2019. The effect of ethanol extract of Centella asiatica on tactile motility and body length of hypoxic larval zebrafish. AIP roceeding Conference. 020001
    Barbazuk,W.B.,Korf, I., Kadavi, C., Heyen, J., Tate, S.,Wun, E., Bedell, J.A., McPherson, J.D., Johnson, S.J., 2000. The Syntenic Relationship of the Zebrafish andHuman Genomes. Cold Spring Harbour Laboratory Press.
    Belyaeva, N.F., Kashirtseva, V.N., Medvedeva, N.V., Khudoklinove, Y.Y., Ipatova, O.M., Archakov, A.I., 2009. Zebrafish as A Model System for Biomedical Studies. Biomedical Biochemistry. Vol. 3. No. 4. Pp. 343-350.
    Detrich, H.W.,Westerfield, M., Zon, L.I., 2009. Essential ZebrafishMethod : Genetics and Genomics. Elsevier. 1st edition. UK.
    Driever, W, Solnica-Krezel, L, Schier, AF, Neuhauss, SC, Malicki, J, Stem- ple, DL, Stainier, DY, Zwartkruis, F, Abdelilah, S, Rangini, Z, Belak, J, and Boggs, C., 1996. A Genetic Screen for Mutations Affecting Embryo- genesis in Zebrafish. Development 123: 37-46.
    Eisen, J.S., 1996. Zebrafish Make a Big Splash. Cell Vol 87.Pp 969-977.
    Fishman, M.C., 1999. Zebrafish Genetics: The Enigma of Arrival. Proc NatlAcadSci USA Vol 96. Pp 10554-10556.
    Fourquet, B., Weinstein, B.L., Serluca, F.C., Fishman, F.C., 1997. Vessel Patterning in the Embryo of Zebrafish : Guidance by Notochord. Dev Biol. Vol 183. Pp 37-48.
    Hsu, C.H.,Wen, Z.H., Lin, C.S., Chakraborty, C., 2007. The Zebrafish Model: Use in Studying Cellular Mechanisms for a Spectrum of Clinical Disease Entity. Curr Neurovascular Res. Vol 4. Pp 111-120.
    Kelly, K.A., Havrilla, C.M., Brady, T.C., Abramo, K.H., Levin, E.D., 1998. Oxidative Stress in Toxicology : Establish Mammalian ans Piscine Model System. Environ Health Perspec. Vol 106. PP 375-384.
    Khotimah H, Darwitri D, Yuliyani T, Nuraenah E, Zahara E, Kalsum U, Nurdiana N, Ali M. M., 2018. Centella Asiatica Increased the Body Length Through the Modulation of Antioxidant in Rotenone-Induced Zebrafish Larvae. Biomed Pharmacol J;11(2).
    Khotimah, H., Ali, M.M., Sumitro, S.B., Widodo, M.A., 2015. Decreasing ?-synuclein aggregation by methanolic extract of Centella asiatica in zebrafish Parkinson's model. Asian Pacific Journal of Tropical Biomedicine. 5(11):948-954
    Khotimah H, Darwitri D, Yuliyani T, Nuraenah E, Zahara E, Kalsum U, Nurdiana N, Ali M. M. Centella Asiatica Increased the Body Length Through the Modulation of Antioxidant in Rotenone-Induced Zebrafish Larvae. Biomed Pharmacol J 2018;11(2).
    Kidd, K.R., Weinstein, B.M., 2003. Fishing for Nover Angiogenic Therapies. Brithis H of Phar. Vol 180. Pp 585-594.
    Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullman, B., Schilling, T.F., 1995. Stages of Embryonic Development of the Zebrafish. Journal of Developmental Dynamics.
    Knapik, E.A., Goodman, M., Ekker, M., Chevrette, J., Delgado, S., Neuhauss, N., Shimoda, W., Driever, M., Fishman, J.H., 1998. A Microsatelite Genetic Linkage Map for Zebrafish (Daniorerio). Nat genet 18: 338-343.
    Langheinrich, U., 2003. Bioassays. Vol. 25, pp. 904–912.
    Leischke, G.J., Currie, P.D., 2007. Animal Models for Human Disease : Zebrafish Swim into View. Nat Pub Group. Vol 8. Pp 353-367.
    Murphy, P., 2003. Model Organism. Developmental Biology.
    Patton, E.E., Zon, L.I., 2001. The Art and Design of Genetic Screen : Zebrafish. Nat Rev Genet. Vol 2. Pp 956-966.
    Raible, D., Granato., M., 2011. Zebrafish Development and Genetics. Marine Biological Library. USA.
    Risnawati., Diestika, Y., Khotimah, H., Ali, M.M., Widodo., M.A., Nurdiana, Kalsum., U., 2019. Development of cadmium-induced zebrafish larvae improved by Centella asiatica AIP roceeding Conference. 2108, 020032Octaviana, R., Wari, F.E., Noviasari, D., Khotimah, Ali, M.M., Nurdiana, Kalsum, U., 2019. Effect of Centella asiatica to developmental process of lead-induced zebrafish larvae. AIP proceeding Conference. 2108, 020033
    Supriadi, R.F., Permata, T.R., Norisa, N., Khotimah, H., Ali, M.M., Widodo, M.A., Nurdiana, Kalsum, U., 2019. Centella asiatica protect the development of aluminum-induced zebrafish larvae. AIP proceeding Conference . 2108, 020030
    Stewart AM, Braubach O, Spitsbergen J, Gerlai R and Kalueff AV, 2014 Zebrafish models for translational neuroscience research: from tank to bedside. Trends in Neurosci Vol. 37, 5.
    Streisinger, G., Walker, C., Dower, N., Knauber, D. & Singer, F., 1981.Production of Clones of Homozygous Diploid Zebra Fish (Brachydaniorerio). Nature 291, pp: 293–296
    Weinstein, B.M., Stemple, D.L., Driever, W., Fishman, M.C., 1995. Gridlock, a Localize Heritable Vascular Patterning Defect in Zebrafish. Nat Med. Vol 1. Pp 1143-1147.