Main Article Content

Abstract

Coronary heart disease is often found in workers, including hospital health workers. The purpose of the study was to determine the relationship between the type of work, working period and work pattern on the risk of coronary heart disease in health workers at the Jakarta Islamic Hospital Pondok Kopi. This study is an analytical research with a cross sectional method. Samples were obtained by taking primary data from questionnaires and secondary data from  medical check-up results. A total of 70 people met the inclusion criteria as a sample. The risk of cardiovascular disease is calculated using the Framingham score online. Based on the results of the analysis using SPSS 21.0, the relationship between the working period and the risk of CHD was obtained with a value of p=0.029 (p<0.05). Meanwhile, the type of work and work pattern were not found to be associated with the risk of Coronary Heart Disease (p=0.361 and p=0.735).


 


Penyakit jantung koroner sering dijumpai pada pekerja antara lain tenaga kesehatan rumah sakit. Tujuan penelitian untuk mengetahui hubungan antara jenis pekerjaan, masa kerja dan pola kerja terhadap risiko penyakit jantung koroner pada tenaga kesehatan Rumah Sakit Islam Jakarta Pondok Kopi. Penelitian ini merupakan penelitian analitik dengan metode cross sectional. Sampel diperoleh dengan pengambilan data primer kuesioner dan data sekunder dari dokumen hasil medical check up. Sebanyak 70 orang memenuhi kriteria inklusi sebagai sampel. Risiko penyakit cardiovaskuler dihitung menggunakan skor Framingham secara online. Berdasarkan hasil analisis menggunakan SPSS 21.0 didapatkan hubungan antara masa kerja dengan risiko PJK dengan nilai p=0,029 (p<0,05). Sedangkan jenis pekerjaan dan pola kerja tidak didapatkan hubungan dengan risiko Penyakit Jantung Koroner  (nilai p=0,361 dan p=0,735).


 

Keywords

Jenis Pekerjaan Masa Kerja Pola Kerja Risiko Penyakit Jantung Koroner Skor Framingham Chi square

Article Details

How to Cite
Emilya, V., Wening Tri Mawanti, & Atik Mufidah. (2025). Hubungn antara Jenis Pekerjaan, Masa Kerja dan Pola Kerja Terhadap Risiko Penyakit Jantung Koroner pada Tenaga Kesehatan Rumah Sakit Islam Jakarta Pondok Kopi. Sanus Medical Journal, 7(1), 21–40. https://doi.org/10.22236/sanus.v7i1.19967 (Original work published February 28, 2025)

References

  1. Baines CP, Kaiser RA, Purcell NH, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434(7033):658-662.
  2. https://doi.org/10.1038/nature03434
  3. Basso E, Fante L, Fowlkes J, et al. Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J Biol Chem. 2005;280(19):18558-18561.
  4. https://doi.org/10.1074/jbc.C500089200
  5. Baughman JM, Perocchi F, Girgis HS, et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature. 2011;476(7360):341-345.
  6. https://doi.org/10.1038/nature10234
  7. Bell DSH, Goncalves E. Heart failure in the patient with diabetes: Epidemiology, aetiology, prognosis, therapy and the effect of glucose‐lowering medications. Diabetes Obes Metab. 2019;21:1277-1290.
  8. https://doi.org/10.1111/dom.13652
  9. Cadrin-Tourigny J, Shohoudi A, Roy D, et al. Decreased mortality with beta-blockers in patients with heart failure and coexisting atrial fibrillation: an AF-CHF substudy. JACC Heart Fail. 2017;5:99-106.
  10. https://doi.org/10.1016/j.jchf.2016.10.015
  11. Clarke SJ, McStay GP, Halestrap AP. Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J Biol Chem. 2002;277(38):34793-34799.
  12. https://doi.org/10.1074/jbc.M202191200
  13. Crompton M, Costi A, Hayat L. Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. Biochem J. 1987;245(3):915-918.
  14. https://doi.org/10.1042/bj2450915
  15. Csordas G, Golenar T, Seifert EL, et al. MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca(2)(+) uniporter. Cell Metab. 2013;17(6):976-987.
  16. https://doi.org/10.1016/j.cmet.2013.04.020
  17. De Stefani D, Raffaello A, Teardo E, et al. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature. 2011;476(7360):336-340.
  18. https://doi.org/10.1038/nature10230
  19. Dhillon J. Tantangan Diagnostik dan Penanganan PPOK yang Tumpang Tindih dengan Gagal Jantung. Cermin Dunia Kedokteran. 2016;43:713-716.
  20. Diana HA, Weraman P, Folamauk C. Hubungan Merokok dengan Penyakit Jantung Koroner di RSUD Prof. DR. W. Z. Johannes Kupang. Timorese Journal of Public Health. 2020;1(4):157-163.
  21. https://doi.org/10.35508/tjph.v1i4.2143
  22. Disrinama AM, Rachman F. Analisis Pengaruh Tingkat Risiko PJK dengan Framingharm. Politeknik Perkapalan Negeri Surabaya. 2016;1:23-28.
  23. Dorn GW 2nd, Maack C. SR and mitochondria: calcium cross-talk between kissing cousins. J Mol Cell Cardiol. 2013;55:42-49.
  24. https://doi.org/10.1016/j.yjmcc.2012.07.015
  25. Drago I, Pizzo P, Pozzan T. After half a century mitochondrial calcium in- and efflux machineries reveal themselves. EMBO J. 2011;30(20):4119-4125.
  26. https://doi.org/10.1038/emboj.2011.337
  27. Eisner V, Csordas G, Hajnoczky G. Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle - pivotal roles in Ca(2)(+) and reactive oxygen species signaling. J Cell Sci. 2013;126 Pt 14:2965-2978.
  28. https://doi.org/10.1242/jcs.093609
  29. Farahdika A, Azam M. Faktor Risiko Yang Berhubungan Dengan Penyakit Jantung Koroner Pada Usia Dewasa Madya (41-60 TAHUN). Unnes Journal of Public Health. 2015;4(2):117-123.
  30. Ghani L, Susilawati MD, Novriani H. Faktor Risiko Dominan Penyakit Jantung Koroner di Indonesia. Buletin Penilitian Kesehatan. 2016;44(3):153-164.
  31. https://doi.org/10.22435/bpk.v44i3.5436.153-164
  32. Giorgio V, Soriano ME, Basso E, et al. Cyclophilin D in mitochondrial pathophysiology. Biochim Biophys Acta. 2010;1797(6-7):1113-1118.
  33. https://doi.org/10.1016/j.bbabio.2009.12.006
  34. Giorgio V, von Stockum S, Antoniel M, et al. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci U S A. 2013;110(15):5887-5892.
  35. https://doi.org/10.1073/pnas.1217823110
  36. Griffiths EJ, Halestrap AP. Protection by cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol. 1993;25(12):1461-1469.
  37. https://doi.org/10.1006/jmcc.1993.1162
  38. Hajnoczky G, Csordas G, Das S, et al. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium. 2006;40(5-6):553-560.
  39. https://doi.org/10.1016/j.ceca.2006.08.016
  40. Hafliah F, Syafriati A. Pengaruh Pemberian Pendidikan Kesehatan Pra Kateterisasi Jantung Terhadap Peningkatan Pengetahuan Pasien. Jurnal Ilmiah Multi Science Kesehatan. 2023;15(1):49-50.
  41. https://doi.org/10.36729/bi.v15i1.1062
  42. Hayashi T, Martone ME, Yu Z, et al. Three-dimensional electron microscopy reveals new details of membrane systems for Ca2+ signaling in the heart. J Cell Sci. 2009;122 Pt 7:1005-1013.
  43. https://doi.org/10.1242/jcs.028175
  44. Hegg DS. Prevalence of Risk Factors for Cardiovascular disease in Paramedics. International Archives of Occupational and Enviroment Health. 2015;88(7):973-980.
  45. https://doi.org/10.1007/s00420-015-1028-z
  46. Hsu YY, Wang R, Bai HC. Significant Impacts of Work-Relate Cerebrovaskular and Disease Among Young Workers. International Journal of Enviromental Research and Public Health. 2019;16(6):1-11.
  47. https://doi.org/10.3390/ijerph16060961
  48. Hunter DR, Haworth RA. The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys. 1979;195(2):453-459.
  49. https://doi.org/10.1016/0003-9861(79)90371-0
  50. Hunter DR, Haworth RA. The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch Biochem Biophys. 1979;195(2):468-477.
  51. https://doi.org/10.1016/0003-9861(79)90373-4
  52. Iskandar, Hadi, A., Alfridsyah. Faktor Risiko Terjadinya Penyakit Jantung Koroner pada Pasien Rumah Sakit Umum Meuraxa Banda Aceh. Jurnal Action. 2017;2(1):32-42.
  53. https://doi.org/10.30867/action.v2i1.34
  54. Johanis IJ, Tedju Hinga IA, Sir AB. Faktor Risiko Hipetensi, Merokok dan Usia Terhadap Kejadian Penyakit Jantung Koroner pada Pasien di RSUD Prof. DR. W. Z. Johanes Kupang. Media Kesehatan Masyarakat. 2020;2(1):33-40.
  55. https://doi.org/10.35508/mkm.v2i1.1954
  56. Juliana M, Camelia A, Rahmiwati A. Analisis Faktor Risiko Kelelahan Kerja Pada Karyawan Bagian Produksi PT. Arwana Anugrah Keramik, Tbk. Jurnal Ilmu Kesehatan Masyarakat. 2019;9(1):53-63.
  57. https://doi.org/10.26553/jikm.2018.9.1.53-63
  58. Khan R, Sikanderkhel S, Gui J, et al. Thyroid and cardiovascular disease: a focused review on the impact of hyperthyroidism in heart failure. Cardiol Res. 2020;11:68.
  59. https://doi.org/10.14740/cr1034
  60. Kotecha D, Manzano L, Krum H, et al. Effect of age and sex on efficacy and tolerability of β blockers in patients with heart failure with reduced ejection fraction: individual patient data meta-analysis. Bmj. 2016;353.
  61. https://doi.org/10.1136/bmj.i1855
  62. Laksono S. Seri Kardiologi Praktis Gagal Jantung: Bintang Pustaka. Bintang Pustaka Madani; 2021.
  63. Laksono S, Pratama AP, Halomoan R, et al. A Short Review of New Drugs for Heart Failure: Omecamtiv Mecarbil and Vericiguat. Journal of Drug Delivery and Therapeutics. 2022;12:206-209.
  64. https://doi.org/10.22270/jddt.v12i2-S.5432
  65. Laksono S, Nurapipah P, Nurusshofa Z, et al. Role of Primary Care in Management of Heart Failure Preserved Ejection Fraction (HFpEF): A Literature Review. Journal of Drug Delivery and Therapeutics. 2022;12:221-224.
  66. https://doi.org/10.22270/jddt.v12i3-S.5508
  67. Leung AW, Halestrap AP. Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim Biophys Acta. 2008;1777(7-8):946-952.
  68. https://doi.org/10.1016/j.bbabio.2008.03.009
  69. Lina N, Saraswati D. Deteksi Dini Penyakit Jantung Koroner di Pos Pembinaan Terpadu Penyakit Tidak Menular (POSBINDU PTM). Jurnal Kesehatan Komunitas Indonesia. 2019;15(2):94-95.
  70. https://doi.org/10.37058/jkki.v15i2.1257
  71. Lipworth B, Wedzicha J, Devereux G, et al. Beta-blockers in COPD: time for reappraisal. European Respiratory Journal. 2016;48:880-888.
  72. https://doi.org/10.1183/13993003.01847-2015
  73. M, L., Y, L., C, L. Faktor Risiko Kardiovaskular Pada Pekerja Rumah Sakit selama Pandemi COVID-19. Jurnal International dari Penelitian Lingkungan dan Kesehatan Masyarakat. 2022:1-11.
  74. Málek F. Reaching betablockers target dose in elderly patients with chronic heart failure. Cor Vasa. 2014;56:e37-e41.
  75. https://doi.org/10.1016/j.crvasa.2014.01.001
  76. Manolis A, Doumas M, Ferri C, et al. Erectile dysfunction and adherence to antihypertensive therapy: focus on β-blockers. Eur J Intern Med. 2020;81:1-6.
  77. https://doi.org/10.1016/j.ejim.2020.07.009
  78. Marniati, Notoatmodjo S, Kasiman S, et al. Lifestyle of Determinant Penderita Penyakit Jantung Koroner. Depok: PT Raja Grafindo Persada; 2021.
  79. Masarone D, Martucci ML, Errigo V, et al. The use of β-blockers in heart failure with reduced ejection fraction. J Cardiovasc Dev Dis. 2021;8:101.
  80. https://doi.org/10.3390/jcdd8090101
  81. Miura T, Tanno M, Sato T. Mitochondrial kinase signalling pathways in myocardial protection from ischaemia/reperfusion-induced necrosis. Cardiovasc Res. 2010;88(1):7-15.
  82. https://doi.org/10.1093/cvr/cvq206
  83. Nakagawa T, Shimizu S, Watanabe T, et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434(7033):652-658.
  84. https://doi.org/10.1038/nature03317
  85. Naomi WS, Picauly I, Toy SM. Faktor Risiko Kejadian Penyakit Jantung Koroner (Studi Kasus di RSUD Prof. Dr. W. Z. Johanes Kupang). Media Kesehatan Masyarakat. 2021;3(1):99-107.
  86. https://doi.org/10.35508/mkm.v3i1.3622
  87. Noer ER, Laksmi K. Peningkatan Angka Kejadian Obesitas dan Hipertensi pada Pekerja. Universitas Diponegoro. 2015;2(1):256-272.
  88. Ofstad AP, Atar D, Gullestad L, et al. The heart failure burden of type 2 diabetes mellitus-a review of pathophysiology and interventions. Heart Fail Rev. 2018;23:303-323.
  89. https://doi.org/10.1007/s10741-018-9685-0
  90. Pacher P, Thomas AP, Hajnoczky G. Ca2+ marks: miniature calcium signals in single mitochondria driven by ryanodine receptors. Proc Natl Acad Sci U S A. 2002;99(4):2380-2385.
  91. https://doi.org/10.1073/pnas.032423699
  92. Papanicolaou KN, Khairallah RJ, Ngoh GA, et al. Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol. 2011;31(6):1309-1328.
  93. https://doi.org/10.1128/MCB.00911-10
  94. Perocchi F, Gohil VM, Girgis HS, et al. MICU1 encodes a mito-chondrial EF hand protein required for Ca(2+) uptake. Nature. 2010;467(7313):291-296.
  95. https://doi.org/10.1038/nature09358
  96. Reddy V, Taha W, Kundumadam S, et al. Atrial fibrillation and hyperthyroidism: a literature review. Indian Heart J. 2017;69:545-550.
  97. https://doi.org/10.1016/j.ihj.2017.07.004
  98. Rodrigues SG, Mendoza YP, Bosch J. Beta-blockers in cirrhosis: evidence-based indications and limitations. JHEP Reports. 2020;2:100063.
  99. https://doi.org/10.1016/j.jhepr.2019.12.001
  100. Rampengan SH. Peran Terkini Beta Bloker pada Pengobatan Kardiovaskular. Universitas Indonesia Publishing; 2014.
  101. Saotome M, Katoh H, Satoh H, et al. Mitochondrial membrane potential modulates regulation of mitochondrial Ca2+ in rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 2005;288(4):H1820-H1828.
  102. https://doi.org/10.1152/ajpheart.00589.2004
  103. Sari OM, Cahaya N, Susilo YH. Studi Penggunaan Obat Golongan Beta-Blocker Pada Pasien Rawat Inap Rumah Sakit Ansari Saleh Banjarmasin. Jurnal Farmasi Udayana. 2020;9:123.
  104. https://doi.org/10.24843/JFU.2020.v09.i02.p07
  105. Stolfo D, Uijl A, Benson L, et al. Association between beta‐blocker use and mortality/morbidity in older patients with heart failure with reduced ejection fraction. A propensity score‐matched analysis from the Swedish Heart Failure Registry. Eur J Heart Fail. 2020;22:103-112.
  106. https://doi.org/10.1002/ejhf.1615
  107. Tagami T, Yambe Y, Tanaka T, et al. Short-term effects of β-adrenergic antagonists and methimazole in new-onset thyrotoxicosis caused by Graves' disease. Internal Medicine. 2012;51:2285-2290.
  108. https://doi.org/10.2169/internalmedicine.51.7302
  109. Vetter C, Devore E, Wegrzyn L, et al. Hubungan Antara Kerja Shift Malam Bergilir Dan Risiko Penyakit Jantung Koroner. National Library Of Medicine. 2017;3(1):1726-1734.
  110. Wu VC, Chen S, Ting P, et al. Selection of β‐Blocker in Patients With Cirrhosis and Acute Myocardial Infarction: A 13‐Year Nationwide Population‐Based Study in Asia. J Am Heart Assoc. 2018;7:e008982.
  111. https://doi.org/10.1161/JAHA.118.008982
  112. Zulkifli RST, Akbar SA. Hubungan Usia, Masa Kerja dan Beban Kerja Dengan Stres Kerja Pada Karyawan. Jurnal kesehatan masyarakat. 2019;5(1):46-61.
  113. https://doi.org/10.24903/kujkm.v5i1.831