Main Article Content

Abstract

Abstract


BACKGROUND


The sodium salt of glutamic acid, monosodium glutamate (MSG), is a white crystalline compound (glutamic acid). MSG was first produced in large quantities in early 1963 by Korea and Japan which then spread to other countries, including Indonesia. The medical profession is concerned about the detrimental consequences of MSG because of its widespread and uncontrolled consumption. The histological differences between the cerebellum of MSG-treated and MSG-free rats are of interest to researchers.


METHOD


The Post Test-Only Control Group design was used in this study and used data collected for 14 days. This study used 30 male mice of the Swiss Webster type (Mus Musculus) which were reared as pure strains through inbreeding. Mice taken were 8 weeks old weighing 20 – 40 grams and divided into three groups, each consisting of nine mice with one tail in reserve for each group. One group as a control and two groups will receive MSG orally, each at a dose of 3 mg and 8 mg. Termination of mice was carried out by means of dislocation of the cervical vertebrae and continued with preparation of mice brain tissue preparations. Data analysis, which was obtained from observing the histological appearance of the mouse brain, used the Paired-Sample T test in the SPSS (Statistical Product and Service Solutions) version 20.0 for Windows with a significance level of 0.05.


RESULTS


In this study, there was no difference in the histological appearance of the brain cerebellum of mice in the control group and the administration of 3 mg and 8 mg of MSG. However, there was a greater increase in body weight in mice given 3 mg of MSG compared to the group given 8 mg of MSG and controls, the average weight gain was 2.87 mg.


CONCLUSION


After observing through a microscope on the brain preparations of control mice, MSG 3 mg and MSG 8 mg, no difference in histological appearance was found. But giving MSG to mice affects weight gain.


 


Abstrak


LATAR BELAKANG


Garam natrium dari asam glutamat, monosodium glutamat (MSG), adalah senyawa kristal putih (asam glutamat). MSG pertama kali diproduksi dalam jumlah besar pada awal tahun 1963 oleh Korea dan Jepang yang kemudian menyebar ke negara lain, termasuk Indonesia. Profesi medis prihatin dengan konsekuensi merugikan dari MSG karena konsumsinya yang meluas dan tidak terkendali. Perbedaan histologis antara otak kecil tikus yang diberi MSG dan bebas MSG adalah hal yang menarik untuk diketahui.


METODE


Desain Post Test-Only Control Group digunakan dalam penelitian ini dan menggunakan data yang terkumpul selama 14 hari. Penelitian ini menggunakan 30 ekor mencit jantan jenis Swiss Webster (Mus Musculus) yang dipelihara sebagai galur murni melalui perkawinan sedarah. Mencit yang diambil berumur 8 minggu dengan berat 20 – 40gram dan dibagi menjadi tiga kelompok, masing-masing terdiri atas sembilan ekor mencit dengan cadangan satu ekor untuk setiap kelompok. Satu kelompok sebagai kontrol dan dua kelompok akan menerima MSG secara oral, masing-masing dengan dosis 3 mg dan 8 mg. Terminasi mencit dilakukan dengan cara dislokasi vertebra servikal dan dilanjutkan pembuatan preparat jaringan otak mencit. Analisis data, yang diperoleh dari pengamatan gambaran histologis otak mencit, menggunakan Paired-Sample T test pada program SPSS (Statistical Product and Service Solutions) versi 20.0 for Windows dengan tingkat kemaknaan 0,05.


HASIL


Pada penelitan ini tidak ditemukan adanya perbedaan pada gambaran histologis cerebellum otak mencit pada kelompok kontrol dan pemberian MSG 3 mg dan 8 mg. Namun, terdapat peningkatan berat badan lebih banyak pada mencit yang diberikan MSG 3 mg dibandingkan dengan kelompok yang diberikan MSG 8 mg dan kontrol, rata-rata kenaikan berat badan sebesar 2,87 mg.


KESIMPULAN


Setelah dilakukan pengamatan melalui mikroskop pada preparat otak mencit kontrol, MSG 3 mg dan MSG 8 mg, belum ditemukan perbedaan gambaran histologis. Tetapi pemberian MSG pada mencit mempengaruhi pertambahan berat badan.

Keywords

cerebellum gambaran histologis mencit monosodium glutamat obesitas

Article Details

Author Biographies

Suriyani Tan, Departemen Parasitologi, Fakultas Kedokteran, Universitas Trisakti, Jakarta, Indonesia

Departemen Parasitologi, Fakultas Kedokteran, Universitas Trisakti, Jakarta, Indonesia

Pusat Studi Infeksi Tropis dan Kesehatan Masyarakat, Universitas Trisakti, Jakarta, Indonesia

Machrumnizar Machrumnizar, Pusat Studi Infeksi Tropis dan Kesehatan Masyarakat, Universitas Trisakti, Jakarta, Indonesia

Departemen Parasitologi, Fakultas Kedokteran, Universitas Trisakti, Jakarta, Indonesia 

Pusat Studi Infeksi Tropis dan Kesehatan Masyarakat, Universitas Trisakti, Jakarta, Indonesia 

How to Cite
Tan, S., Machrumnizar, M., & Yunus Slamet, M. A. (2023). Monosodium Glutamat (MSG) dan Gambaran Histologis Otak: Implikasi terhadap Pembentukan Otak Mencit. Sanus Medical Journal, 5(1), 1–9. https://doi.org/10.22236/sanus.v5i1.11335

References

  1. Monosodium glutamate, Editor(s): J.K. Aronson, Meyler's Side Effects of Drugs (Sixteenth Edition), Elsevier, 2016, Pages 1103-1104, ISBN 9780444537164, https://doi.org/10.1016/B978-0-444-53717-1.01105-7.
  2. Kwok RH. Chinese-restaurant syndrome. N Engl J Med.1968;278(14):796. https://doi.org/10.1056/nejm196804042781419
  3. Kanti Bera, T.; Kumar Kar, S.; Kumar Yadav, P.; Mukherjee, P.; Yadav, S.; Joshi, B. Effects of monosodium glutamate (MSG) on human health: a systematic review. World J Pharm Sci 2017, 5, 139-144. Available online at: http://www.wjpsonline.org/
  4. Filippa Juul, Niyati Parekh, Euridice Martinez-Steele, Carlos Augusto Monteiro, Virginia W Chang, Ultra-processed food consumption among US adults from 2001 to 2018, The American Journal of Clinical Nutrition, Volume 115, Issue 1, January 2022, Pages 211–221, https://doi.org/10.1093/ajcn/nqab305
  5. H.N. Henry-Unaeze, Update on food safety of monosodium l-glutamate (MSG), Pathophysiology (2017), http://dx.doi.org/10.1016/j.pathophys.2017.08.001;
  6. J.D. Fernstrom, M. Smriga, Letter-to-the-Editor: Shannon M. et al., 2017, Toxicol. Lett. 272 (2017) 101–102, https://doi.org/10.1016/j.toxlet.2017.03.004;
  7. Chakraborty SP. Patho-physiological and toxicological aspects of monosodium glutamate. Toxicol Mech Methods. 2019 Jul;29(6):389-396. http://doi.org/10.1080/15376516.2018.1528649
  8. European Food Safety Authority (EFSA) reviews safety of glutamate added to food, https://www.efsa.europa.eu/en/press/news/170712. Accessed 03/02/2023
  9. Sharma A, Prasongwattana V, Cha’on U, Selmi C, Hipkaeo W, Boonnate P, et al. (2013) Monosodium Glutamate (MSG) Consumption Is Associated with Urolithiasis and Urinary Tract Obstruction in Rats. PLoS ONE 8(9): e75546. https://doi.org/10.1371/journal.pone.0075546
  10. Madeira C, Alheira FV, Calcia MA, Silva TCS, Tannos FM, Vargas-Lopes C, Fisher M, Goldenstein N, Brasil MA, Vinogradov S, Ferreira ST and Panizzutti R (2018) Blood Levels of Glutamate and Glutamine in Recent Onset and Chronic Schizophrenia. Front. Psychiatry 9:713. https://doi.org/10.3389/fpsyt.2018.00713
  11. Chakraborty SP. Patho-physiological and toxicological aspects of monosodium glutamate. Toxicol Mech Methods. 2019 Jul;29(6):389-396. https://doi.org/10.1080/15376516.2018.1528649
  12. Simon H, Muhartomo H, Pudjonarko D. Pengaruh Pemberian Monosodium Glutamat peroral terhadap Degenerasi Neuron Piramidal CA1 Hipokampus pada Tikus Wistar. Med Hosp. 2013: 175-181. http://dx.doi.org/10.36408/mhjcm.v1i3.67
  13. Fernstrom JD. Monosodium Glutamate in the Diet Does Not Raise Brain Glutamate Concentrations or Disrupt Brain Functions. Ann Nutr Metab 2018;73(suppl 5):43–52. https://doi.org/10.1159/000494782;
  14. Urena-Guerrero ME, Lopez-perez SJ, Beaz-Zarate C. Neonatal Monosodium Glutamete Treatment Modifies Glutmic Acid Decaboxylase Activity During Rat Brain Postnatal Development. Neurochem Int 42(4). 2003 Mar: 269-276; https://doi.org/10.1016/s0197-0186(02)00131-6
  15. Gonzales-Burgos I, Perez MI, Beas-Zarate C. Neonatal Exposure to Monosodium Glutamate Induces Cell Death and Dendritic Hypothrophy in Rat Prefontocortical Pyramidan Neurons. Neurosci Lett 297. 2001:69-72; https://doi.org/10.1016/s0304-3940(00)01669-4
  16. Park CH, Choi SH, Piao Y, Kim S, Lee YJ, Kim HS, et al. Glutamate and Aspartate Impair Memory Retention and Damage Hypothalamic Neurons in Adult Mice. Toxicol Lett 115(2). 2000 May: 117-25. https://doi.org/10.1016/s0378-4274(00)00188-0
  17. Moriwaki, K.; Shiroishi, T.; Yonekowa, H. Genetic in Wild Mice: Its Application to Biomedical Research. Karger. Switzerland, 1994. ISBN: 3805560540, 9783805560542
  18. Suckow, M.A.; Danneman, P.; Brayton, C. The Laboratory Mouse. CRC Press. Edinburg, 2000, p: 1-168. ISBN: 978-084937627-6;0849303222;978-084930322-7
  19. Eweka A, Om'iniabohs F. Histological studies of the effects of monosodium glutamate on the ovaries of adult wistar rats. Ann Med Health Sci Res. 2011 Jan;1(1):37-43. PMID: 23209953; PMCID: PMC3507099. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3507099/
  20. Abu-Taweel G.M, A Z.M, Ajarem J.S, Ahmad M. Cognitive and biochemical effects of monosodium glutamate and aspartame, administered individually and in combination in male albino mice. Neurotoxicol Teratol. 2014 Mar-Apr;42:60-7. doi: 10.1016/j.ntt.2014.02.001. Epub 2014 Feb 18. PMID: 24556450. https://doi.org/10.1016/j.ntt.2014.02.001
  21. Olney JW, Price MT. Excitotoxic amino acids as neuroendocrine research tools. Methods Enzymol. 1983;103: 379-93. PMID: 6142399. https://doi.org/10.1016/S0076-6879(83)03026-8
  22. Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr. 2000; 130 (4S Suppl): 1007S-15S. https://doi.org/10.1093/jn/130.4.1007S
  23. Pal Mia Michaela. Glutamate: The Master Neurotransmitter and Its Implications in Chronic Stress and Mood Disorders. Front Hum Neurosci. 2021; 15. https://doi.org/10.3389/fnhum.2021.722323
  24. Bera T.K, Kar S.K, Yadav P.K, Mukherjee P, Yadav S, Joshi B. Effects of monosodium glutamate (MSG) on human health: a systematic review. World J Pharm Sci. 2017; 5(5): 139-144. http://www.wjpsonline.org/
  25. Fernstrom JD. Monosodium Glutamate in the Diet Does Not Raise Brain Glutamate Concentrations or Disrupt Brain Functions. Ann Nutr Metab. 2018;73 Suppl 5:43-52. https://doi.org/10.1159/000494782
  26. Vila-Pueyo M, Hoffmannhttps J, Romero-Reyes M, Akerman S. Brain structure and function related to headache: Brainstem structure and function in headache. Cephalalgia. 2019; 39(13): 1635-1660. https://doi.org/10.1177/0333102418784698
  27. Balkhi H.M, Gul T, Banday M.Z, Haq E. Glutamate Excitotoxicity: An Insight into the Mechanism. Int J of Adv Res. 2014; 2(7): 361-373. https://www.journalijar.com/article/2176/glutamate-excitotoxicity:-an-insight-into-the-mechanism/
  28. Ortuño-Sahagún D, González RM, Verdaguer E, Huerta VC, Torres-Mendoza BM, Lemus L, Rivera-Cervantes MC, Camins A, Zárate CB. Glutamate excitotoxicity activates the MAPK/ERK signaling pathway and induces the survival of rat hippocampal neurons in vivo. J Mol Neurosci. 2014; 52(3): 366-77. https://doi.org/10.1007/s12031-013-0157-7
  29. Zehra Kazmi, Iffat Fatima, Shaghufta Perveen & Saima Shakil Malik (2017) Monosodium glutamate: Review on clinical reports. Int J of Food Properties, 20: 1807-1815. https://doi.org/10.1080/10942912.2017.1295260
  30. Olney JW. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science. 1969 May 9;164(3880):719-21. https://doi.org/10.1126/science.164.3880.719
  31. Eweka A, Om'iniabohs F. Histological studies of the effects of monosodium glutamate on the ovaries of adult wistar rats. Ann Med Health Sci Res. 2011 Jan;1(1):37-43. PMID: 23209953; PMCID: PMC3507099.
  32. Reeds PJ, Burrin DG, Stoll B, Jahoor F. Intestinal glutamate metabolism. J Nutr. 2000 Apr;130(4S Suppl):978S-82S. doi: 10.1093/jn/130.4.978S. PMID: 10736365.
  33. Helms HCC, Nielsen CU, Waagepetersen HS, Brodin B. Glutamate Transporters in the Blood-Brain Barrier. Adv Neurobiol. 2017;16:297-314. doi: 10.1007/978-3-319-55769-4_15. PMID: 28828617.
  34. Hawkins RA, Viña JR. How Glutamate Is Managed by the Blood-Brain Barrier. Biology (Basel). 2016 Oct 8;5(4):37. doi: 10.3390/biology5040037. PMID: 27740595; PMCID: PMC5192417.
  35. Smith QR. Transport of glutamate and other amino acids at the blood-brain barrier. J Nutr. 2000 Apr;130(4S Suppl):1016S-22S. doi: 10.1093/jn/130.4.1016S. PMID: 10736373.
  36. Baculikova M, Fiala R, Jezova D, Macho L, Zorad S. Rats with monosodium glutamate-induced obesity and insulin resistance exhibit low expression of Galpha(i2) G-protein. Gen Physiol Biophys. 2008 Sep;27(3):222-6. PMID: 18981538.
  37. Rakesh Kumar Diwan, G.L. Shah. Insulin Induced Congenital Malformations In Rat. Journal of Anatomical Society of India. 2011; 60(1): 1-5. https://doi.org/10.1016/S0003-2778(11)80002-X.
  38. Anderson RL, Randall MD, Chan SL. The complex effects of cannabinoids on insulin secretion from rat isolated islets of Langerhans. Eur J Pharmacol. 2013 Apr 15;706(1-3):56-62. doi: 10.1016/j.ejphar.2013.02.034. Epub 2013 Mar 13. PMID: 23499687.
  39. Scherer T, O’Hare J, Diggs-Andrews K, Schweiger M, Cheng Bob, Lindtner C, et al. Brain Insulin Controls AdiposeTtissue Lipolysis and Lipogenesis. Celle Metab 13(2). 2011:183-194.
  40. Fatunzzi G. Adipose Tissue, Adipokines, and Inflammation. J Allergy Clin Immunol 115(5). 2005 May: 911-919
  41. Meier U, Gressner AM. Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin Chem. 2004 Sep;50(9):1511-25. doi: 10.1373/clinchem.2004.032482. Epub 2004 Jul 20. PMID: 15265818.
  42. He K, Du S, Xun P, Sharma S, Wang H, Zhai F, et al. Consumption of Monosodium Glutamate in Relation to Incidence of Overweight in Chinese Adults: China Health and Nutrition Survey (CHNS). Am J Clin Nutr 93(6). 2011:1328-1336
  43. Shefer G, Marcus Y, Stern N. Is obesity a brain disease? Neurosci Biobehav Rev. 2013 Dec;37(10 Pt 2):2489-503. doi: 10.1016/j.neubiorev.2013.07.015. Epub 2013 Aug 1. PMID: 23911925.
  44. Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis. 2017 May;1863(5):1037-1045. doi: 10.1016/j.bbadis.2016.04.017. Epub 2016 May 6. PMID: 27156888; PMCID: PMC5344771.
  45. Mazon JN, de Mello AH, Ferreira GK, Rezin GT. The impact of obesity on neurodegenerative diseases. Life Sci. 2017 Aug 1;182:22-28. doi: 10.1016/j.lfs.2017.06.002. Epub 2017 Jun 3. PMID: 28583368.
  46. Janaína Niero Mazon, Aline Haas de Mello, Gabriela Kozuchovski Ferreira, Gislaine Tezza Rezin. The impact of obesity on neurodegenerative diseases. Life Sciences. 2017, 182: 22-28, https://doi.org/10.1016/j.lfs.2017.06.002