Dinamika Indeks Kekeringan Terhadap Perubahan Iklim Di Sub-DAS Upper Brantas, Jawa Timur

Mahmud Zakariyah, Novi Silvia, Evi Fitriana

Abstract

Drought is one of the significant impacts of climate change that affects water availability, agricultural productivity and ecosystem sustainability. This research aims to analyze the drought index in the Upper Brantas River Sub-Watershed (DAS) area, which plays an important role in the agricultural sector of the local community. The drought index is calculated based on the ratio of annual precipitation to annual potential evapotranspiration, with precipitation and evapotranspiration data obtained from the Global Agro Ecological Zone (GAEZ) V4 Data Portal. This research utilizes the Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 climate change scenarios in four time periods: 1981–2010, 2011–2040, 2041–2070, and 2071–2100. The results show that precipitation tends to decrease under RCP 4.5, while RCP 8.5 shows fluctuations, but remains higher than the RCP 4.5 value. In contrast, potential evapotranspiration shows a significant increase, especially in the RCP 8.5 scenario. The combination of these changes produces a drought index pattern that tends to decrease, so that the Upper Brantas Subwatershed area becomes drier, with worse impacts in the RCP 8.5 scenario. Spatial analysis revealed a strong negative correlation between potential evapotranspiration and drought indices, confirming the role of evapotranspiration in exacerbating drought conditions. This research can be the basis for recommendations by emphasizing the urgency of adaptation to climate change, such as managing water resources, increasing farmer capacity, and optimizing sustainable agricultural practices, in order to minimize the impact of drought on the sustainability of the Upper Brantas Subwatershed area.

Full text article

Generated from XML file

References

Abatzoglou, J. T., Dobrowski, S. A., Parks, K. C., & Katherine, C. Hegewisch.(2018). Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015.

Badora, D., Wawer, R., Nierobca, A., Krol-Badziak, A., Kozyra, J., Jurga, B., & Nowocien, E. (2022). Modelling the hydrology of an upland catchment of Bystra River in 2050 climate using RCP 4.5 and RCP 8.5 emission scenario forecasts. Agriculture, 12(3), 403.

BNPB. (2016). Resiko Bencana Indonesia.

BBWS Brantas (2010). Pola Pengelolaan Sumber Daya Air Wilayah Sungai Brantas.

Colantoni, A., Delfanti, L. M. P., Cossio, F., Baciotti, B., Salvati, L., Perini, L., & Lord, R. (2015). Soil aridity under climate change and implications for agriculture in Italy. Applied Mathematical Sciences, 9(50), 2467-2475.

Fan, G., Sarabandi, A., & Yaghoobzadeh, M. (2021). Evaluating the climate change effects on temperature, precipitation and evapotranspiration in eastern Iran using CMPI5. Water Supply, 21(8), 4316-4327.

Fischer, G., Nachtergaele, F.O., van Velthuizen, H.T., Chiozza, F., Franceschini, G., Henry, M., Muchoney, D. and Tramberend, S. 2021. Global Agro-Ecological Zones v4 – Model documentation. Rome, FAO.

Herlina, N., & Prasetyorini, A. (2020). Pengaruh perubahan iklim pada musim tanam dan produktivitas jagung (Zea mays L.) di Kabupaten Malang. Jurnal Ilmu Pertanian Indonesia, 25(1), 118-128.

IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

Javid, K., Akram, M. A. N., Ranjha, M. M., & Pervaiz, S. (2020). GIS-based assessment of aridity over Punjab Province, Pakistan, by using climatic indices. Arabian Journal of Geosciences, 13, 1-12.

Jensen, M. E., & Allen, R. G. (2016). Evaporation, evapotranspiration, and irrigation water requirements: Task Committee on Revision of Manual 70 (No. Ed. 2). American Society of Civil Engineers (ASCE).

Karimi, T., Stöckle, C. O., Higgins, S. S., & Nelson, R. L. (2021). Impact of climate change on greenhouse gas emissions and water balance in a dryland-cropping region with variable precipitation. Journal of Environmental Management, 287, 112301.

KLHK. (2021). Indonesia long-term strategy for low carbon and climate resilience 2050.

Li, Z., Rosenfeld, D., & Fan, J. (2017). Aerosols and their impact on radiation, clouds, precipitation, and severe weather events. In Oxford Research Encyclopedia of Environmental Science.

Lü, G., Batty, M., Strobl, J., Lin, H., Zhu, A. X., & Chen, M. (2019). Reflections and speculations on the progress in Geographic Information Systems (GIS): a geographic perspective. International journal of geographical information science, 33(2), 346-367.

Ministry of Environment and Forestry. (2021). Indonesia long-term strategy for low carbon and climate resilience 2050.

Masruroh, D., & Bowo, C. (2022). Analisis Indeks Kekeringan Metode Standardized Precipitation Index (SPI) dan Pengaruhnya Terhadap Produktivitas Padi dan Jagung. Jurnal Tanah Dan Sumberdaya Lahan, 9(2), 277-284.

Mirzabaev, A., J. Wu, J. Evans, F. García-Oliva, I.A.G. Hussein, M.H. Iqbal, J. Kimutai, T. Knowles, F. Meza, D. Nedjraoui, F. Tena, M. Türkeş, R.J. Vázquez, & M. Weltz,. (2019). Desertification. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D.C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press.

Moral, F. J., Rebollo, F. J., Paniagua, L. L., García-Martín, A., & Honorio, F. (2016). Spatial distribution and comparison of aridity indices in Extremadura, southwestern Spain. Theoretical and applied climatology, 126, 801-814.

Muttaqin, T. (2017). Laju Erosi terhadap Perubahan Tata Guna Lahan Kawasan Hutan Lindung pada Area Pertanian Desa Sumber Brantas, Kecamatan Bumiaji, Kota Batu. Daun: Jurnal Ilmiah Pertanian dan Kehutanan, 4(2), 119-125.

Nafisha, A. U., & Suwarsito, S. (2019). Kajian Pengaruh Pola Curah Hujan terhadap Produktivitas Padi di Kecamatan Pagerbarang Kabupaten Tegal. Sainteks, 15(1).

Nastos, P. T., Politi, N., & Kapsomenakis, J. (2013). Spatial and temporal variability of the Aridity Index in Greece. Atmospheric Research, 119, 140-152.

Pramasani, E. M., & Soelistyono, R. (2019). Dampak perubahan iklim terhadap perubahan musim tanam Padi (Oryza sativa L.) di Kabupaten Malang. PLANTROPICA: Journal of Agricultural Science, 3(2), 85-93.

Salvati, L., Zitti, M., Di Bartolomei, R., & Perini, L. (2012). Climate aridity under changing conditions and implications for the agricultural sector: Italy as a case study. Geography Journal, 2013.

Septiani, R., & Arifianto, F. (2022). Identifikasi Kekeringan Meteorologi menggunakan SPI 3 Bulanan dan 6 Bulanan di DAS Brantas Hulu. The Climate of Tropical Indonesia Maritime Continent Journal, 1(2).

Shi, L., Feng, P., Wang, B., Li Liu, D., Cleverly, J., Fang, Q., & Yu, Q. (2020). Projecting potential evapotranspiration change and quantifying its uncertainty under future climate scenarios: A case study in southeastern Australia. Journal of hydrology, 584, 124756.

SHOFIYATI, R., HONDA, K., WIJESEKERA, N., & WIDAGDO, W. (2012). Monitoring Agricultural Drought Using GIS and Remote Sensing Technologies in Upper Brantas Watershed. Indonesian Soil and Climate Journal, (20), 134961.

Sholikhati, I., Harisuseno, D., & Suhartanto, E. (2014). Studi Identifikasi Indeks Kekeringan Hidrologis Pada Daerah Aliran Sungai (DAS) Berbasis Sistem Informasi Geografis (SIG)(Studi Kasus pada DAS Brantas Hulu: Sub-DAS Upper Brantas, Sub-DAS Amprong dan Sub-DAS Bangosari). Jurnal Teknik Pengairan, 4(2).

Thanvisitthapon, N., Nakburee, A., Khamchiangta, D., & Saguansap, V. (2023). Climate change-induced urban heat Island trend projection and land surface temperature: A case study of Thailand's Bangkok metropolitan. Urban Climate, 49, 101484.

Venus, V. (2009). Aridity risk reduction framework and practices: contributing to the Hyogo framework for action: e-book.

Yadeta, D., Kebede, A., & Tessema, N. (2020). Potential evapotranspiration models evaluation, modelling, and projection under climate scenarios, Kesem sub-basin, Awash River basin, Ethiopia. Modeling Earth Systems and Environment, 6(4), 2165-2176.

Zaini, A. H., & Saitama, A. (2023). Analisa Perubahan Iklim dan Pengaruhnya pada Produktivitas Tanaman Padi di Kabupaten Malang. PLANTROPICA: Journal of Agricultural Science, 8(2), 173-180.

Zhang, K., Kimball, J. S., & Running, S. W. (2016). A review of remote sensing based actual evapotranspiration estimation. Wiley interdisciplinary reviews: Water, 3(6), 834-853.

Zakariyah, M., Wiwoho, B. S., Astuti, I. S., & Kiloes, A. M. (2024). Dynamics of Exposure and Sensitivity of Agricultural Sector to Climate Change in Yogyakarta Special Region as Observed by Geospatial Datasets. In IOP Conference Series: Earth and Environmental Science (Vol. 1406, No. 1, p. 012020). IOP Publishing.

Zhao, J., Xia, H., Yue, Q., & Wang, Z. (2020). Spatiotemporal variation in reference evapotranspiration and its contributing climatic factors in China under future scenarios. International Journal of Climatology, 40(8), 3813-3831.

Zhu, A. X., Zhao, F. H., Liang, P., & Qin, C. Z. (2021). Next generation of GIS: must be easy. Annals of GIS, 27(1), 71-86.

Zomer, R. J., Xu, J., & Trabucco, A. (2022). Version 3 of the global aridity index and potential evapotranspiration database. Scientific Data, 9(1), 409.

Authors

Mahmud Zakariyah
mahmud.zakariyah.2107226@students.um.ac.id (Primary Contact)
Novi Silvia
Evi Fitriana
Zakariyah, M., Novi Silvia, & Evi Fitriana. (2025). Dinamika Indeks Kekeringan Terhadap Perubahan Iklim Di Sub-DAS Upper Brantas, Jawa Timur. Jurnal Geografi, Edukasi Dan Lingkungan (JGEL), 9(1), 1–14. https://doi.org/10.22236/jgel.v9i1.15074

Article Details