Analysis Of Landslide Susceptibility In The Cugenang New Fault Area In The North Of Cianjur Regency
Abstract
A landslide is a disaster that often occurs in Indonesia, especially in morphology that has rough topography. This disaster is caused by faults, natural factors such as rainfall, topography, soil type, rock type, and human activity factors such as changes in land covered by a land cover or other factors related to landslide triggers. This research is located in the northern part of the Cianjur residency, this area is located between active volcanic mountains which have a distribution of sedimentary rocks and volcanic rocks, which are included in the Bandung physiographic zone, and have the new Cugenang fault. The unit of analysis is districts, which consist of 10 sub-districts. The purpose of this study was to analyze the landslide hazard distribution in the northern part of the Cianjur regency. The study used a sptial approach by using the weight overlay method for all parameters that have previously been analyzed and interpolated. The results of this study are very high Susceptibility covering 0.06%, high Susceptibility 47.49%, moderate Susceptibility 52%, and low Susceptibility 0.01%. The most vulnerable area is Sukaresmi, and the sub-district with moderate Susceptibility is Cikalong Kulon, while the low and high Susceptibility is relatively scattered in all areas with a small percentage. Based on the parameters analyzed, it means that rainfall and slope are the dominant driving factors in landslide Susceptibility in the northern part of the Cianjur regency because they have a large weight. This study provides a classification related to landslide susceptibility mapping in the northern part of Cianjur.
Full text article
References
Badan Pusat Statistik. (2022). Kabupaten Cianjur dalam Angka 2022. Cianjur: BPS
Balita Tertimbun Longsor, Ini Deretan Bencana Alam Sepanjang 2021 di Cianjur. Accessed on December 5, 2022: https://regional.kompas.com/read/2021/12/16/101226578/balita-tertimbun-longsor-ini-deretan-bencana-alam-sepanjang-2021-di-cianjur?page=all
Bălteanu, D., Micu, M., Jurchescu, M., Malet, J., Sima, M., Kucsicsa, G., Dumitrică, C., Petrea, D., Mărgărint, M. C., Bilaşco, Ş., Dobrescu, C., Călăraşu, E., Olinic, E., Boți, I., & Senzaconi, F. (2020). National-scale landslide susceptibility map of Romania in a European methodological framework. Geomorphology, 371, 107432. https://doi.org/10.1016/j.geomorph.2020.107432
Barredo, J., Benavides, A., Hervás, J., & van Westen, C. J. (2000). Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. International Journal of Applied Earth Observation and Geoinformation, 2(1), 9-23. https://doi.org/10.1016/S0303-2434(00)85022-9
Burrows, K., Desai, M. U., Pelupessy, D. C., & Bell, M. L. (2021). Mental wellbeing following landslides and residential displacement in Indonesia. SSM - Mental Health, 1, 100016. https://doi.org/10.1016/j.ssmmh.2021.100016
Chang, M., Cui, P., Dou, X., & Su, F. (2021). Quantitative risk assessment of landslides over the China-Pakistan economic corridor. International Journal of Disaster Risk Reduction, 63, 102441. https://doi.org/10.1016/j.ijdrr.2021.102441
Chen, C., Xie, M., Jiang, Y., Jia, B., & Du, Y. (2021). A new method for quantitative identification of potential landslide. Soils and Foundations, 61(5), 1475-1479. https://doi.org/10.1016/j.sandf.2021.07.004
Chen, M., Tu, H., & Tung, C. (2022). From Chinese tourists to Taiwanese campers: Impacts of tourism policies on campsite land use/cover change. Journal of Environmental Management, 310, 114749. https://doi.org/10.1016/j.jenvman.2022.114749
Chidi, C. L., Zhao, W., Thapa, P., Paudel, B., Chaudhary, S., & Khanal, N. R. (2022). Evaluation of traditional rain-fed agricultural terraces for soil erosion control through UAV observation in the middle mountain of Nepal. Applied Geography, 148, 102793. https://doi.org/10.1016/j.apgeog.2022.102793
Climate Hazards Group InfraRed Precipitation with Station (CHRPS), Accessed on December 5, 2022: https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/cogs/p25/2021/
Davies, T. (2015). Landslide Hazards, Risks, and Disasters: Introduction. Landslide Hazards, Risks, and Disasters, 1-16. https://doi.org/10.1016/B978-0-12-396452-6.00001-X
Delchiaro, M., Della Seta, M., Martino, S., Nozaem, R., & Moumeni, M. (2023). Tectonic deformation and landscape evolution inducing mass rock creep driven landslides: the Loumar case-study (Zagros Fold and Thrust Belt, Iran). Tectonophysics, 846, 229655. https://doi.org/10.1016/j.tecto.2022.229655
Delgado, F., Zerathe, S., Schwartz, S., Mathieux, B., & Benavente, C. (2022). Inventory of large landslides along the Central Western Andes (ca. 15°–20° S): Landslide distribution patterns and insights on controlling factors. Journal of South American Earth Sciences, 116, 103824. https://doi.org/10.1016/j.jsames.2022.103824
Diana, L., Ramadhan, M. A., & Falisa. (2020). Identifikasi Sebaran Rawan Longsor Dengan Aplikasi SIG di Daerah Waluran dan Sekitarnya, Kabupaten Sukabumi, Jawa Barat. Seminar Nasional AVoER XII 2020, Palembang. 18 - 19 November 2020.
Fan, X., Scaringi, G., Korup, O., West, A. J., van Westen, C. J., Tanyas, H., ... & Huang, R. (2019). Earthquake‐induced chains of geologic hazards: Patterns, mechanisms, and impacts. Reviews of Geophysics, 57(2), 421-503.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., ... & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data, 2(1), 1-21.
Gao, Z., Ding, M., Huang, T., Liu, X., Hao, Z., Hu, X., & Chuanjie, X. (2022). Landslide risk assessment of high-mountain settlements using Gaussian process classification combined with improved weight-based generalized objective function. International Journal of Disaster Risk Reduction, 67, 102662. https://doi.org/10.1016/j.ijdrr.2021.102662
Gempa Cianjur Disebabkan Sesar Cugenang, BMKG Dorong Pemkab Cianjur Relokasi 9 Desa. Accessed on December 5, 2022: https://www.bmkg.go.id/berita/?p=gempa-cianjur-disebabkan-sesar-cugenang-bmkg-dorong-pemkab-cianjur-relokasi-9-desa&lang=ID
GeoNetwork, Accessed on December 5, 2022: https://www.fao.org/land-water/databases-and-software/geonetwork/en/
Giofandi, E. A., Zuhrita, A., Putriana, A. M., & Sekarrini, C. E. (2022). Potential Land Suitability For Spatial Planning of Wheat Commodity ( Triticum Aestivum ) In Tanah Datar Regency. Jurnal Geografi, Edukasi Dan Lingkungan (JGEL), 6(2), 101–112.
Hardianto, A., Winardi, D., Rusdiana, D. D., Putri, A. C. E., Ananda, F., Devitasari, Djarwoatmodjo, F. S., Yustika, F., & Gustav, F. (2020). Pemanfaatan Informasi Spasial Berbasis SIG untuk Pemetaan Tingkat Kerawanan Longsor di Kabupaten Bandung Barat, Jawa Barat. Jurnal Geosains Dan Remote Sensing, 1(1), 23-31. https://doi.org/10.23960/jgrs.2020.v1i1.16
Hawkins, T. (1985). Influence of geological structure on slope stability in the Maentwrog Formation, Harlech Dome, North Wales. Proceedings of the Geologists' Association, 96(4), 289-304. https://doi.org/10.1016/S0016-7878(85)80018-3
He, F., Tan, S., & Liu, H. (2022). Mechanism of rainfall-induced landslides in Yunnan Province using multi-scale spatiotemporal analysis and remote sensing interpretation. Microprocessors and Microsystems, 90, 104502. https://doi.org/10.1016/j.micpro.2022.104502
Ibeh, C. U. (2020). Effect of changing groundwater level on shallow landslide at the basin scale: A case study in the Odo basin of southeastern Nigeria. Journal of African Earth Sciences, 165, 103773. https://doi.org/10.1016/j.jafrearsci.2020.103773
Ketinggian Wilayah Kabupaten Cianjur. Accessed on December 5, 2022: https://cianjurkab.bps.go.id/statictable/2017/03/22/21/ketinggian-wilayah-kabupaten-cianjur-menurut-kecamatan-tahun-2015.html
Li, J., Bai, Y., & Alatalo, J. M. (2020). Impacts of rural tourism-driven land use change on ecosystems services provision in Erhai Lake Basin, China. Ecosystem Services, 42, 101081. https://doi.org/10.1016/j.ecoser.2020.101081
Li, J., Xiao, L., Bakker, J. D., Luo, Q., Yu, H., Wu, J., Li, S., Pedersen, L., Chen, C., Hong, T., Lin, H., Wang, D., & Lin, Y. (2023). Landslide-impacted soils recover faster biologically than chemically or physically, though recovery also varies with forest type in subtropical China. Soil and Tillage Research, 225, 105529. https://doi.org/10.1016/j.still.2022.105529
Liao, M., Wen, H., & Yang, L. (2022). Identifying the essential conditioning factors of landslide susceptibility models under different grid resolutions using hybrid machine learning: A case of Wushan and Wuxi counties, China. CATENA, 217, 106428. https://doi.org/10.1016/j.catena.2022.106428
McClain, K. P., Yıldırım, C., Çiner, A., Sarıkaya, M. A., Özcan, O., Görüm, T., Köse, O., Şahin, S., Kıyak, N. G., & Öztürk, T. (2021). River, alluvial fan and landslide interactions in a tributary junction setting: Implications for tectonic controls on Quaternary fluvial landscape development (Central Anatolian Plateau northern margin, Turkey). Geomorphology, 376, 107567. https://doi.org/10.1016/j.geomorph.2020.107567
Muñoz-Torrero Manchado, A., Antonio Ballesteros-Cánovas, J., Allen, S., & Stoffel, M. (2022). Deforestation controls landslide susceptibility in Far-Western Nepal. CATENA, 219, 106627. https://doi.org/10.1016/j.catena.2022.106627
Muñoz-Torrero Manchado, A., Antonio Ballesteros-Cánovas, J., Allen, S., & Stoffel, M. (2022). Deforestation controls landslide susceptibility in Far-Western Nepal. CATENA, 219, 106627. https://doi.org/10.1016/j.catena.2022.106627
Noviyanto, A., Sartohadi, J., & Purwanto, B. H. (2020). The distribution of soil morphological characteristics for landslide-impacted Sumbing Volcano, Central Java - Indonesia. Geoenvironmental Disasters, 7(1), 1-19. https://doi.org/10.1186/s40677-020-00158-8
Pham, N. T. T., Nong, D., & Garschagen, M. (2021). Natural hazard's effect and farmers' perception: Perspectives from flash floods and landslides in remotely mountainous regions of Vietnam. Science of The Total Environment, 759, 142656. https://doi.org/10.1016/j.scitotenv.2020.142656
Pisano, L., Zumpano, V., Malek, Ž., Rosskopf, C., & Parise, M. (2017). Variations in the susceptibility to landslides, as a consequence of land cover, changes A look to the past and another towards the future. Science of The Total Environment, 601-602, 1147-1159. https://doi.org/10.1016/j.scitotenv.2017.05.231
Quiquerez, A., Gauthier, E., Bichet, V., Petit, C., Murgia, L., & Richard, H. (2022). Reconstructing patterns of vegetation recovery and landscape evolution after a catastrophic landslide (Mont Granier, French Alps, 1248 CE). Anthropocene, 40, 100352. https://doi.org/10.1016/j.ancene.2022.100352
Rahmad, R., Suib, S., & Nurman, A. (2018). Aplikasi SIG Untuk Pemetaan Tingkat Ancaman Longsor Di Kecamatan Sibolangit, Kabupaten Deli Serdang, Sumatera Utara. Majalah Geografi Indonesia, 32(1), 1-13. https://doi.org/10.22146/mgi.31882
Raimondi, L., Pepe, G., Firpo, M., Calcaterra, D., & Cevasco, A. (2023). An open-source and QGIS-integrated physically based model for Spatial Prediction of Rainfall-Induced Shallow Landslides (SPRIn-SL). Environmental Modelling & Software, 160, 105587. https://doi.org/10.1016/j.envsoft.2022.105587
Sebulan Gempa Cianjur: 635 Meninggal Dunia, 5 Warga Masih Hilang. Accessed on December 5, 2022: https://www.cnnindonesia.com/nasional/20221221080231-20-890063/sebulan-gempa-cianjur-635-meninggal-dunia-5-warga-masih-hilang
Shankar, H., Singh, D., & Chauhan, P. (2022). Landslide deformation and temporal prediction of slope failure in Himalayan terrain using PSInSAR and Sentinel-1 data. Advances in Space Research, 70(12), 3917-3931. https://doi.org/10.1016/j.asr.2022.04.062
Sinarta, I. N., Wahyuni, P. I., & Aryastana, P. (2021). Nilai Derajat Kejenuhan Tanah Pada Penilaian Ancaman Longsor Rombakan (Debris Flow) Pada Batuan Vulkanik. Jurnal Riset Rekayasa Sipil, 4(2), 68-74.
Tseng, C., Chan, Y., Jeng, C., Rau, R., & Hsieh, Y. (2021). Deformation of landslide revealed by long-term surficial monitoring: A case study of the slow movement of a dip slope in northern Taiwan. Engineering Geology, 284, 106020. https://doi.org/10.1016/j.enggeo.2021.106020
van Bemmelen, R. W., 1949. The Geology of Indonesia, vol.1A. General Geology of Indonesia and Adjacent Archipelagoes. Sole Agents: Martinus Nijhoff, The Hague.
Wang, D. (2022). Effects of social capital on the mental health of disaster victims: Evidence from the Wenchuan earthquake. International Journal of Disaster Risk Reduction, 83, 103386. https://doi.org/10.1016/j.ijdrr.2022.103386
Williams, F., McColl, S., Fuller, I., Massey, C., Smith, H., & Neverman, A. (2021). Intersection of fluvial incision and weak geologic structures cause divergence from a universal threshold slope model of landslide occurrence. Geomorphology, 389, 107795. https://doi.org/10.1016/j.geomorph.2021.107795
Yang, J., Shi, Z., Peng, M., Zheng, H., Soares-Frazão, S., Zhou, J., Shen, D., & Zhang, L. (2022). Quantitative risk assessment of two successive landslide dams in 2018 in the Jinsha River, China. Engineering Geology, 304, 106676. https://doi.org/10.1016/j.enggeo.2022.106676
Zhao, B. (2021). Landslides triggered by the 2018 Mw 7.5 Palu supershear earthquake in Indonesia. Engineering Geology, 294, 106406. https://doi.org/10.1016/j.enggeo.2021.106406
Zhao, B., Liao, H., & Su, L. (2021). Landslides triggered by the 2018 Lombok earthquake sequence, Indonesia. CATENA, 207, 105676. https://doi.org/10.1016/j.catena.2021.105676
Zhao, B., Wang, Y., Li, W., Lu, H., & Li, Z. (2022). Evaluation of factors controlling the spatial and size distributions of landslides, 2021 Nippes earthquake, Haiti. Geomorphology, 415, 108419. https://doi.org/10.1016/j.geomorph.2022.108419
Zou, Q., Jiang, H., Cui, P., Zhou, B., Jiang, Y., Qin, M., Liu, Y., & Li, C. (2021). A new approach to assess landslide susceptibility based on slope failure mechanisms. CATENA, 204, 105388. https://doi.org/10.1016/j.catena.2021.105388
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.