Profil Kemampuan Geometri Menurut Teori Van Hiele Pada Materi Transformasi Geometri
Abstract
The purpose of this qualitative research is to analyze students' proportional reasoning in solving word problems. The research instrument is a proportional reasoning task sheet for comparison material that has been validated. The subjects of this study were 20 students of grade VII junior high school. The data collection procedure begins with students working on research instruments to determine students' proportional reasoning abilities. After working on the proportional reasoning task sheet, interviews were conducted to find out the students' proportional reasoning, then 3 research subjects were selected to be interviewed with a level of proportional reasoning that fulfills the character namely: (1) building relationships between quantities, (2) writing down quantity ratios to present problems , (3) stimulate to make multiplicative relationships; and (4) looking for unknown values. Data analysis techniques in this study were carried out by transcribing the verbal data collected and reviewing all available data from various sources, namely student answers, think alouds, and interviews. The results of the study obtained 3 subjects from class VII SMP indicating that from the description and analysis of the subjects the researcher found was holistic proportional reasoning.
Tujuan penelitian kualitatif ini adalah untuk menganalisis penalaran proporsional siswa dalam menyelesaikan soal cerita. Instrumen penelitian ini berupa lembar tugas penalaran proporsional materi perbandingan yang telah divalidasi. Subjek penelitian ini adalah siswa kelas VII SMP yang berjumlah 20 siswa. Prosedur pengumpulan data diawali dengan siswa mengerjakan instrumen penelitian untuk mengetahui kemampuan penalaran proporsional siswa. Setelah mengerjakan lembar tugas penalaran proporsional, wawancara dilakukan untuk mengetahui penalaran proporsional yang dimiliki siswa, kemudian dipilih 3 subjek penelitian untuk diwawancarai dengan tingkat penalaran proporsional yang memenuhi karakter yakni: (1) membangung hubungan antar kuantitas, (2) menuliskan kuantitas rasio untuk mempresentasikan masalah, (3) menstimulasikan untuk membuat hubungan multiplikatif; dan (4) mencari nilai yang tidak diketahui.Teknik analisis data dalam penelitian ini dilakukan dengan mentranskripkan data verbal yang dikumpulkan dan meninjau semua data yang tersedia dari berbagai sumber yaitu jawaban siswa, think alouds, dan wawancara. Hasil penelitian diperoleh 3 subjek dari kelas VII SMP menunjukkan bahwa dari deskripsi dan analisis subjek yang peneliti temukan adalah penalaran proporsional tipe holistik.
Full text article
References
Albab, I. U., Hartono, Y., & Darmawijoyo, D. (2014). Kemajuan Belajar Siswa Pada Geometri Transformasi Menggunakan Aktivitas Refleksi Geometri. Jurnal Cakrawala Pendidikan, 3(3), 338–348. https://doi.org/10.21831/cp.v3i3.2378
Alex, J. K., & Mammen, K. J. (2012). A survey of South African Grade 10 learners' geometric thinking levels in terms of the van Hiele Theory. Anthropologist, 14(2), 123–129. https://doi.org/10.1080/09720073.2012.11891229
Alex, J. K., & Mammen, K. J. (2014). An Assessment of the Readiness of Grade 10 Learners for Geometry in the Context of Curriculum and Assessment Policy Statement (CAPS) Expectation. International Journal of Educational Sciences, 7(1), 29–39. https://doi.org/10.1080/09751122.2014.11890167
Atebe, H. U., & Schäfer, M. (2008). "As soon as the four sides are all equal, then the angles must be 90° each”. children's misconceptions in geometry. African Journal of Research in Mathematics, Science and Technology Education, 12(2), 47–65. https://doi.org/10.1080/10288457.2008.10740634
Dello Iacono, U., & Ferrara Dentice, E. (2020). Mathematical walks in search of symmetries: from visualization to conceptualization. International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2020.1850897
Kim, H., Sefcik, J. S., & Christine, B. (2017). Math Course Taking for CTE Concentrators: Evidence from Three Studies of the Impact of a Decade of Education Reform. Journal of Career and Technical Education, 21(1), 51–70. https://doi.org/10.1002/nur.21768.Characteristics
Kurniawati, M., Junaedi, I., Mariani, S., & Artikel, I. (2015). Analisis Karakteristik Berpikir Geometri Dan Kemandirian Belajar Dalam Pembelajaran Fase Van Hiele Berbantuan Geometers Sketchpad. Unnes Journal of Mathematics Education Research, 4(2), 102–107.
Liu, L., & Cummings, R. (2008). Computers in the Schools"¯: Interdisciplinary Journal of Practice , Theory , and Applied A Learning Model That Stimulates Geometric Thinking Through Use of PCLogo and Geometer ' s Sketchpad. Computers in the Schools: Interdisciplinary Journal of Practice, Theory, and Applied Research, April 2015, 85–104. https://doi.org/10.1300/J025v17n01
Maulani, F. I., & Zanthy, L. S. (2020). Analisis Kesulitan Siswa Dalam Menyelesaikan Soal Materi Transformasi Geometri. Gammath"¯: Jurnal Ilmiah Program Studi Pendidikan Matematika, 5(1), 16–25. https://doi.org/10.32528/gammath.v5i1.3189
Nasaruddin, N. (2018). Karakterisik Dan Ruang Lingkup Pembelajaran Matematika Di Sekolah. Al-Khwarizmi: Jurnal Pendidikan Matematika Dan Ilmu Pengetahuan Alam, 1(2), 63–76. https://doi.org/10.24256/jpmipa.v1i2.93
Nurmalasari, Y., & Erdiantoro, R. (2020). Perencanaan Dan Keputusan Karier: Konsep Krusial Dalam Layanan BK Karier. Quanta, 4(1), 44–51. https://doi.org/10.22460/q.v1i1p1-10.497
Stols, G., Long, C., & Dunne, T. (2015). An application of the Rasch measurement theory to an assessment of geometric thinking levels. African Journal of Research in Mathematics, Science and Technology Education, 19(1), 69–81. https://doi.org/10.1080/10288457.2015.1012909
van der Sandt, S., & Nieuwoudt, H. D. (2005). Geometry content knowledge: Is pre-service training making a difference? African Journal of Research in Mathematics, Science and Technology Education, 9(2), 109–120. https://doi.org/10.1080/10288457.2005.10740582
Vercelli, E. J. P. (2017). Profil Kemampuan Berpikir Geometris Siswa Kelas VIII SMP Pangudi Luhur Moyudan Dalam enyelesaikan Soal- Soal Materi Garis-Garis Pada Segitiga Menurut Teori Van Hiele. Skripsi Universitas Sanata Dharma.
Wang, S., & Kinzel, M. (2014). How do they know it is a parallelogram? Analysing geometric discourse at van Hiele Level 3. Research in Mathematics Education, 16(3), 288–305. https://doi.org/10.1080/14794802.2014.933711
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.