Sistem Penghantaran Obat Ko-Amorf: Preparasi dan Pemilihan Koformer
Abstract
Saat ini berbagai macam metode dan teknik untuk memperbaiki sifat fisik seperti kelarutan dan disolusi dari obat-obat golongan BCS (Biopharmaceutical Classification System) kelas II dan IV telah banyak dikaji, diantaranya sistem penghantaran obat ko-amorf. Sistem penghantaran obat ko-amorf (co-amorphous drug delivery system) adalah sistem penghantaran obat dengan kombinasi dari dua atau lebih komponen dengan bobot molekul yang rendah dan membentuk sistem fase tunggal homogen. Sistem ko-amorf memiliki keunggulan kelarutan dan kestabilan yang tinggi dibandingkan sistem lain seperti kokristal karena interaksi antarmolekul yang spesifik. Tujuan review ini adalah untuk mengkaji aspek preparasi dan pemilihan co-former dalam menghasilkan sistem ko-amorf yang baik. Metode pada review ini yaitu studi literatur dengan hasil berupa teknik preparasi, pemilihan zat aktif, kombinasi dengan eksipien, sampai dengan metode serta mekanisme yang diperoleh harus diperhatikan dalam formulasi. Parameter yang berpengaruh dalam pemilihan co-former yang baik adalah sifat fisikokimia zat aktif serta eksipien dan tendensi kristalisasi materi.
Full text article
References
Arnfast, L. et al. (2017) ‘Melt Extrusion of High-Dose Co-Amorphous Drug-Drug Combinations: Theme: Formulation and Manufacturing of Solid Dosage Forms Guest Editors: Tony Zhou and Tonglei Li', Pharmaceutical Research, 34(12), pp. 2689–2697. doi: 10.1007/s11095-017-2254-8.
Boyd, B. J. et al. (2019) ‘Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems', European Journal of Pharmaceutical Sciences, 137, p. 104967. doi: 10.1016/j.ejps.2019.104967.
Censi, R. and Di Martino, P. (2015) ‘Polymorph Impact on the Bioavailability and Stability of Poorly Soluble Drugs', Molecules, 20(10), pp. 18759–18776. doi: 10.3390/molecules201018759.
Chavan, R. B. et al. (2016) ‘Co amorphous systems: A product development perspective', International Journal of Pharmaceutics, 515(1–2), pp. 403–415. doi: 10.1016/j.ijpharm.2016.10.043.
Corner, P. A. et al. (2016) ‘Stabilisation of an amorphous form of ROY through a predicted co-former interaction', Chemical Communications, 52(39), pp. 6537–6540. doi: 10.1039/C6CC02949C.
Craye, G. et al. (2015) ‘Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying', Molecules, 20(12), pp. 21532–21548. doi: 10.3390/molecules201219784.
Cruz-Angeles, J., Videa, M. and Martínez, L. M. (2019) ‘Highly Soluble Glimepiride and Irbesartan Co-amorphous Formulation with Potential Application in Combination Therapy', AAPS PharmSciTech, 20(4), p. 144. doi: 10.1208/s12249-019-1359-2.
Davis, D. G. (1976) ‘Instrumental methods of chemical analysis. Fourth edition (Ewing, Galen W.)', Journal of Chemical Education, 53(8), p. A344. doi: 10.1021/ed053pA344.2.
Dengale, S. J. et al. (2014) ‘Preparation and characterization of co-amorphous Ritonavir–Indomethacin systems by solvent evaporation technique: Improved dissolution behavior and physical stability without evidence of intermolecular interactions', European Journal of Pharmaceutical Sciences, 62, pp. 57–64. doi: 10.1016/j.ejps.2014.05.015.
Fael, H. and Demirel, A. L. (2020) ‘Tannic acid as a co-former in co-amorphous systems: Enhancing their physical stability, solubility and dissolution behavior', International Journal of Pharmaceutics, 581, p. 119284. doi: 10.1016/j.ijpharm.2020.119284.
Frank, K. J. et al. (2012) ‘Amorphous solid dispersion enhances permeation of poorly soluble ABT-102: True supersaturation vs. apparent solubility enhancement', International Journal of Pharmaceutics, 437(1–2), pp. 288–293. doi: 10.1016/j.ijpharm.2012.08.014.
Fung, M., BeÌ…rziņš, K. and Suryanarayanan, R. (2018) ‘Physical Stability and Dissolution Behavior of Ketoconazole–Organic Acid Coamorphous Systems', Molecular Pharmaceutics, 15(5), pp. 1862–1869. doi: 10.1021/acs.molpharmaceut.8b00035.
Fung, M. H. et al. (2018) ‘Drug-Excipient Interactions: Effect on Molecular Mobility and Physical Stability of Ketoconazole–Organic Acid Coamorphous Systems', Molecular Pharmaceutics, 15(3), pp. 1052–1061. doi: 10.1021/acs.molpharmaceut.7b00932.
Gad El-hak, A. S. M. et al. (2019) ‘Molecular conformation, vibrational spectroscopic and NBO analysis of atenolol and atenolol-hydrochlorothiazide cocrystals', Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 222, p. 117200. doi: 10.1016/j.saa.2019.117200.
Haneef, J. and Chadha, R. (2017) ‘Drug-Drug Multicomponent Solid Forms: Cocrystal, Coamorphous and Eutectic of Three Poorly Soluble Antihypertensive Drugs Using Mechanochemical Approach', AAPS PharmSciTech, 18(6), pp. 2279–2290. doi: 10.1208/s12249-016-0701-1.
Hiendrawan, S. et al. (no date) ‘SOLUBILITY ENHANCEMENT OF KETOCONAZOLE VIA SALT AND COCRYSTAL FORMATION', 7(7), p. 6.
Jensen, K. T. et al. (2016) ‘Influence of variation in molar ratio on co-amorphous drug-amino acid systems', European Journal of Pharmaceutics and Biopharmaceutics, 107, pp. 32–39. doi: 10.1016/j.ejpb.2016.06.020.
Karagianni, A., Kachrimanis, K. and Nikolakakis, I. (2018) ‘Co-Amorphous Solid Dispersions for Solubility and Absorption Improvement of Drugs: Composition, Preparation, Characterization and Formulations for Oral Delivery', Pharmaceutics, 10(3), p. 98. doi: 10.3390/pharmaceutics10030098.
Karmwar, P. et al. (2011) ‘Investigation of properties and recrystallisation behaviour of amorphous indomethacin samples prepared by different methods', International Journal of Pharmaceutics, 417(1–2), pp. 94–100. doi: 10.1016/j.ijpharm.2010.12.019.
Kasten, G. et al. (2017) ‘Performance comparison between crystalline and co-amorphous salts of indomethacin-lysine', International Journal of Pharmaceutics, 533(1), pp. 138–144. doi: 10.1016/j.ijpharm.2017.09.063.
Kasten, G. et al. (2018) ‘In vitro and in vivo comparison between crystalline and co-amorphous salts of naproxen-arginine', European Journal of Pharmaceutics and Biopharmaceutics, 132, pp. 192–199. doi: 10.1016/j.ejpb.2018.09.024.
Konstantinidis, A. K. et al. (2011) ‘Controlled nucleation in freeze"drying: Effects on pore size in the dried product layer, mass transfer resistance, and primary drying rate', Journal of Pharmaceutical Sciences, 100(8), pp. 3453–3470. doi: 10.1002/jps.22561.
Korhonen, O., Pajula, K. and Laitinen, R. (2017) ‘Rational excipient selection for co-amorphous formulations', Expert Opinion on Drug Delivery, 14(4), pp. 551–569. doi: 10.1080/17425247.2016.1198770.
Kulthe, V., Chaudhari, P. and Aboul-Enein, H. (2014) ‘Freeze-dried Amorphous Dispersions for Solubility Enhancement of Thermosensitive API Having Low Molecular Lipophilicity', Drug Research, 64(09), pp. 493–498. doi: 10.1055/s-0033-1363249.
Laitinen, R. et al. (2013) ‘Emerging trends in the stabilization of amorphous drugs', International Journal of Pharmaceutics, 453(1), pp. 65–79. doi: 10.1016/j.ijpharm.2012.04.066.
Ling, Z. et al. (2019) ‘Effects of ball milling on the structure of cotton cellulose', Cellulose, 26(1), pp. 305–328. doi: 10.1007/s10570-018-02230-x.
Löbmann, K. et al. (2012) ‘Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions', European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V, 81(1), pp. 159–169. doi: 10.1016/j.ejpb.2012.02.004.
Majumder, M. et al. (2011) ‘A carbamazepine-indomethacin (1"¯: 1) cocrystal produced by milling', CrystEngComm, 13(21), p. 6327. doi: 10.1039/c1ce05650f.
Manchanda, S. and Sahoo, P. K. (2017) ‘Topical delivery of acetazolamide by encapsulating in mucoadhesive nanoparticles', Asian Journal of Pharmaceutical Sciences, 12(6), pp. 550–557. doi: 10.1016/j.ajps.2017.04.005.
Martínez, L. M. et al. (2017) ‘Two-phase amorphous-amorphous solid drug dispersion with enhanced stability, solubility and bioavailability resulting from ultrasonic dispersion of an immiscible system', European Journal of Pharmaceutics and Biopharmaceutics, 119, pp. 243–252. doi: 10.1016/j.ejpb.2017.06.021.
Meng-Lund, H. et al. (2018) ‘The use of molecular descriptors in the development of co-amorphous formulations', European Journal of Pharmaceutical Sciences, 119, pp. 31–38. doi: 10.1016/j.ejps.2018.04.014.
Moinuddin, S. M. et al. (2017) ‘Facile formation of co-amorphous atenolol and hydrochlorothiazide mixtures via cryogenic-milling: Enhanced physical stability, dissolution and pharmacokinetic profile', International Journal of Pharmaceutics, 532(1), pp. 393–400. doi: 10.1016/j.ijpharm.2017.09.020.
Ohori, R., Akita, T. and Yamashita, C. (2019) ‘Mechanism of collapse of amorphous-based lyophilized cake induced by slow ramp during the shelf ramp process', International Journal of Pharmaceutics, 564, pp. 461–471. doi: 10.1016/j.ijpharm.2019.04.057.
Pang, W. et al. (2017) ‘Preparation of Curcumin–Piperazine Coamorphous Phase and Fluorescence Spectroscopic and Density Functional Theory Simulation Studies on the Interaction with Bovine Serum Albumin', Molecular Pharmaceutics, 14(9), pp. 3013–3024. doi: 10.1021/acs.molpharmaceut.7b00217.
Park, H. et al. (2020) ‘Characterization and therapeutic efficacy evaluation of glimepiride and L-arginine co-amorphous formulation prepared by supercritical antisolvent process: Influence of molar ratio and preparation methods', International Journal of Pharmaceutics, 581, p. 119232. doi: 10.1016/j.ijpharm.2020.119232.
Paudel, A. et al. (2013) ‘Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: Formulation and process considerations', International Journal of Pharmaceutics, 453(1), pp. 253–284. doi: 10.1016/j.ijpharm.2012.07.015.
Qian, S. et al. (2015) ‘Coamorphous Lurasidone Hydrochloride–Saccharin with Charge-Assisted Hydrogen Bonding Interaction Shows Improved Physical Stability and Enhanced Dissolution with pH-Independent Solubility Behavior', Crystal Growth & Design, 15(6), pp. 2920–2928. doi: 10.1021/acs.cgd.5b00349.
Qiao, N. et al. (2011) ‘Pharmaceutical cocrystals: An overview', International Journal of Pharmaceutics, 419(1–2), pp. 1–11. doi: 10.1016/j.ijpharm.2011.07.037.
Ruponen, M., Rusanen, H. and Laitinen, R. (2020) ‘Dissolution and Permeability Properties of Co-Amorphous Formulations of Hydrochlorothiazide', Journal of Pharmaceutical Sciences, 109(7), pp. 2252–2261. doi: 10.1016/j.xphs.2020.04.008.
Russo, M. G. et al. (2018) ‘Rational Design of a Famotidine–Ibuprofen Coamorphous System: An Experimental and Theoretical Study', The Journal of Physical Chemistry B, 122(37), pp. 8772–8782. doi: 10.1021/acs.jpcb.8b06105.
Sanphui, P. et al. (2015) ‘Cocrystals of Hydrochlorothiazide: Solubility and Diffusion/Permeability Enhancements through Drug–Coformer Interactions', Molecular Pharmaceutics, 12(5), pp. 1615–1622. doi: 10.1021/acs.molpharmaceut.5b00020.
Savjani, K. T., Gajjar, A. K. and Savjani, J. K. (2012) ‘Drug Solubility: Importance and Enhancement Techniques', ISRN Pharmaceutics, 2012, pp. 1–10. doi: 10.5402/2012/195727.
Setyawan, D., Sari, R., Yusuf, H., & Primaharinastiti, R. (2014). ‘PREPARATION AND CHARACTERIZATION OF ARTESUNATE - NICOTINAMIDE COCRYSTAL BY SOLVENT EVAPORATION AND SLURRY METHOD'. Asian Journal of Pharmaceutical and Clinical Research, pp. 7 (1), 62-65.
Shi, Q., Moinuddin, S. M. and Cai, T. (2019) ‘Advances in coamorphous drug delivery systems', Acta Pharmaceutica Sinica B, 9(1), pp. 19–35. doi: 10.1016/j.apsb.2018.08.002.
Silva, J. F. C., Rosado, M. T. S. and Eusébio, M. E. S. (2021) ‘Structure and energetics of intermolecular association in two lurasidone co-amorphous drug systems', Journal of Molecular Structure, 1242, p. 130709. doi: 10.1016/j.molstruc.2021.130709.
Tamilvanan, S. and Kumar, B. A. (2011) ‘Influence of acetazolamide loading on the ( in vitro ) performances of non-phospholipid-based cationic nanosized emulsion in comparison with phospholipid-based anionic and neutral-charged nanosized emulsions', Drug Development and Industrial Pharmacy, 37(9), pp. 1003–1015. doi: 10.3109/03639045.2011.555407.
Ueda, H. et al. (2016) ‘A Strategy for Co-former Selection to Design Stable Co-amorphous Formations Based on Physicochemical Properties of Non-steroidal Inflammatory Drugs', Pharmaceutical Research, 33(4), pp. 1018–1029. doi: 10.1007/s11095-015-1848-2.
Wostry, M., Plappert, H. and Grohganz, H. (2020) ‘Preparation of Co-Amorphous Systems by Freeze-Drying', Pharmaceutics, 12(10), p. 941. doi: 10.3390/pharmaceutics12100941.
Wu, W. et al. (2021) ‘Comparison of co-former performance in co-amorphous formulations: Single amino acids, amino acid physical mixtures, amino acid salts and dipeptides as co-formers', European Journal of Pharmaceutical Sciences, 156, p. 105582. doi: 10.1016/j.ejps.2020.105582.
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.