

Homepage : https://journal.uhamka.ac.id/index.php/omega

Application of ERP (Engage, Research, And Present) Learning Model in Online Scheme in Science Learning to Improve Critical Thinking Skills of Junior High School Students Utami Dian Pertiwi¹, Siswanto^{1*}, Rina Rahayu¹

¹²³Science Education Study Program, Faculty of Teacher Training and Education, Science Education Study Program, Tidar University, Magelang, Indonesia

*Email: <u>siswanto@untidar.ac.id</u>

Received :6 Oktober 2021

ABSTRACT

Published : 29 Desember 2021

Critical thinking skills are one of the 21st century skills that are very important to mastered. Several studies show that the critical thinking level of students is still quite low. Critical thinking skills can be trained through the learning process, the right learning model is able to activate the potential of students who can improve critical thinking skills. This study aims to analyze the effectiveness of the ERP learning model in an online scheme towards improving the critical thinking skills of junior high school students. This research is an educational experiment research using the Quasi Experiment method with the type of research approach, namely quantitative research. The design used in this research is the Nonequivalent Control Group Design. Based on the results of the study, the effect size test shows that the effect size value is 0.77 where the value is included in the large category. Based on the results of the effect size test that has been carried out, these results show the effectiveness of the ERP learning model is greater than the conventional learning model (discovery learning) in improving the critical thinking skills of junior high school students in science subjects.

Keywords: ERP learning model, critical thinking skill, online learning, research-based learning.

INTRODUCTION

Critical thinking skills are one of the 21st century skills that are very important to mastered. These skills include the ability to access, analyze, synthesize information that can be learned, trained and mastered [13]. According to Facione [5] critical thinking is a thinking skill that has goals such as proving something, interpreting the meaning of something, and solving problems. Critical thinking skills are needed in the field of education because critical thinking skills are able to help students understand the conditions of the surrounding environment [10]. Critical thinking skills need to be trained in learning to help students be able to reflect on themselves and apply the knowledge they already have with the knowledge gained while at school [8].

Several studies show that the level of critical thinking skills of students is still low. Supported by research that has been carried out by Prihartiningsih [12], it shows that 75.63% of junior high school students' critical thinking skills are still low or not yet developed. The results of this study are in line with Nuryanti's research [11] where junior high school students have low critical thinking skills. Critical thinking skills in students need to be trained through learning activities. This is supported by the opinion of Yuliati [20] which states that critical thinking skills require practice to be improved. Critical thinking skills can be trained through the learning

process, appropriate learning models are able to activate the potential of students who can improve critical thinking skills [7]. The learning model that can be applied is by integrating research activities into the learning process (research-based learning).

The ERP learning model is a learning model that can be used as an alternative for today's learning. The ERP learning model is a research-based learning model, where the learning process is designed to train students to conduct research activities in order to acquire knowledge, while educators serve as facilitators. In practice, the ERP learning process

must be able to facilitate students in training 21st century skills, especially critical thinking skills [15].

This study uses an ERP learning model with an online scheme, because this research was conducted during the COVID-19 pandemic. Online learning is learning that is carried out through the internet network without being limited by space and time by using teaching materials from various sources on the internet [19]. Based on the existing problems and because of the importance of training critical thinking skills for students. The researcher intends to examine how the application of the ERP learning model in an online scheme to improve critical thinking skill of junior high school student.

RESEARCH METHOD

This research is an educational experiment research using the Quasi Experiment method with the type of research approach, namely quantitative research. The design used in this research is the Nonequivalent Control Group Design. This study used one experimental class and one control class. The experimental class was treated with an ERP learning model in an online scheme and the control class was treated with a discovery learning model in an online scheme. This research was conducted to determine the effectiveness of the ERP learning model in an online scheme on the critical thinking skills of junior high school students.

The population of the research to be carried out is all 7th grade students of SMP Negeri 5 Magelang which consists of 8 classes. The samples used in this study were seventh grade students from two different classes at SMP Negeri 5 Magelang.

Data collection techniques and instruments used in this study were tests and student activity observation sheets. The test instrument in this study was in the form of a description test that had been adjusted to the indicators of critical thinking skills according to Ennis as many as 12 questions. Before the instrument is used, the validity of the research instrument will be tested through the content validity of Aiken's V. To determine the magnitude of the change between the pre-test and post-test of students, the data were analyzed using the Gain normality test ISSN: 2502-2318 (Online) ISSN: 2443-2911 (Print)

Homepage : https://journal.uhamka.ac.id/index.php/omega

(N-Gain). The test shows whether or not there is an increase in students' critical thinking skills. N-Gain is calculated with the help of *IBM SPSS Statistics 25*. With the N-Gain criteria described as follows:

Table 1. N-Gain criteria according to Hake [6]

Gain	Interpretation
g < 0,3	Low
$0,3 \le g \le 0,7$	Middle
g≥0,7	High

To determine the effectiveness of the ERP learning model on students' critical thinking skills. The formula for the effect size based on Thalheimer [17] is:

$$d = \frac{\overline{X}_t - \overline{X}_c}{S_{pooled}}$$
$$S_{pooled} = \sqrt{\frac{(n_t - 1)s_t^2 + (n_c - 1)s_c^2}{n_t + n_c}}$$

description:

d	= Effect size
\overline{X}_t	= Average <i>gain</i> of experimental class
\overline{X}_c	= Average <i>gain</i> of control class
\mathbf{S}_{t}	= Deviation standard of experimental
	class

- S_c = Deviation standard of control class
- nt = Number of experimental class sample
- n_c = Number of control class sample

Effect size criteria [2] described as follows:

Table 2. Effect Size Criteria

Effect Size	Criteria
$d \le 0,2$	Low
0,2 < d < 0,5	Middle
$0,5 < d \le 0,8$	High

Meanwhile, the data obtained from the observation instrument were analyzed for the percentage of

learning implementation and the level of independence of students in each activity which was calculated by the percentage formula as follows:

% implementation =

 $\frac{\text{total score obtained}}{\text{maximum score total}} \times 100\%$

RESULT AND DISCUSSION

The discussion of the results of this study discusses in depth the results of data processing with relevant theories regarding critical thinking skills which are assessed based on critical thinking indicators according to Ennis [4] which consists of 5 indicators, namely Elementary clarification (focusing analyzing arguments, auestions. asking and answering questions about an explanation). and challenging questions), basic support (considering the credibility of a source, observing and considering the results of observations), inference (making deductions and considering the results of deductions, making inductions and considering the results of inductions, making and considering the results of Advanced clarification (identifying decisions), assumptions, defining considering terms. definitions), and Strategies and tactics (deciding an action, interacting with others).

This study discusses the effectiveness of the ERP learning model on the critical thinking skills of junior high school students compared to conventional learning models (discovery learning). The difference ISSN: 2502-2318 (Online) ISSN: 2443-2911 (Print)

Homepage : https://journal.uhamka.ac.id/index.php/omega

in the effectiveness of a learning model is seen from the magnitude of the increase or the N-Gain value from the test results between classes.

The research was conducted in the experimental class using the ERP learning model. Learning activities in the experimental class begin by giving a pre-test of critical thinking skills to experimental class students to determine students' critical thinking skills before being given treatment. Learning activities in the experimental class begin with the teacher opening learning in the classroom through virtual meetings and then entering the learning phase which is divided into 3 phases, namely the engage phase, the research phase, and the present phase. The design of the learning activities carried out are as follows:

 Table 3. Experimental Class Learning Activities

Phases	Student	Teacher
	Activities	Activities
Engage	Reading	Showing
	phenomena or	phenomena
	problems	regarding
	regarding	environmental
	environmental	pollution as
	pollution as	presented on
	presented on	student
	student	worksheets
	worksheets.	through
		virtual
		meetings.

ISSN: 2502-2318 (Online) ISSN: 2443-2911 (Print)

Homepage :
https://journal.uhamka.ac.id/index.php/omega

	Identify	Identify		with the help			
	important	important		of several			
	points in	points in		questions. on			
	phenomena or	phenomena or		student			
	problems as	problems as		worksheet.			
	presented on	presented on		Summarizing	Guidir	ng	
	student	student		the results of	studen	ts in	
	worksheets	worksheets		research	makin	g	
	through virtual	through		activities.	conclu	isions.	
	meetings.	virtual					
	C	meetings.		Make a short	Guidir	Ig	
	Develop	Guiding		report of	studen	ts in	
	research	students to		learning	compi	ling	
	auestions	formulate		activities	short r	enorts	
	based on the	questions	Prosont	Make a mind	Direct	ing	
	problems	based on	11050111	man of	studen	ts to	
	presented on	problems.		research	make	mind	
	student	F		activities	mane	lilling	
	worksheets.			Mind man that	maps.		
	Reviewing the	Presenting		should be			
	literature	literature/		arranged			
	related to the	reading on		Drosonting the	Facilit	oto	
	formulated	environmental		results of the	racin	alt to to	
	research	pollution		investigation	studen	t the	
	question	ponution.		mvestigation	presen	t the	
	Mapping the	Guiding		with the fille	results	of the	
	stages of the	students in		hap that has	lillilla i	nap mat	
	investigation	making the		been made.	nas de	en	
	stages	stages of			made.		
	stages.	investigation	Deced on t	he estimities that	have he	an comind	out hu
Rosparch	Formulate	Directing	Dased off the	the activities that	nave be	the magnitude	out by
Research	hypotheses	students to	students in	D learning made	al class,	the results	s snow
	hasad on	formulate	that the ER	P learning mode	1 can 1m	prove the d	
	rasser oli	rassarah	thinking s	kills of junior	high s	school stu	idents,
	research	hypotheses	especially i	n the experimen	tal class.	This can t	be seen
	Questions.	Drowido	from the r	esults of the cr	itical thi	nking skil	lls test
	Carry out	Flovide	which show	ws that there is	a differe	nce betwe	en the
			results of t	he pre-test and p	ost-test	scores. Ba	sed on
	activities in	when carrying	Table 4.,	the increase in	critical	thinking	in the
	accordance	out research	experiment	al class is inclu	ided in t	he high ca	itegory
	with the	activities.	with an N (Gain score of 0.7	or 70%.		
	provided		7		Th:1	. D 1/	c
	student		Ţ	able 4. Critical	I ninkin	g Result of	Ι
	worksheet.			Experimen			
	Analyze the	Provide	Kesult	Experimen	Gain	Categor	у
	data and	assistance to			0.70	TTT T	
	discuss the	analyze the	Pre test	60.12	0,70	H1gh	
	data obtained	data obtained.	Post test	87.68			

Based on the increase in each sub-indicator of critical thinking in Figure 1, the ERP learning model is very good in improving critical thinking skills, especially on the indicators of strategies and tactics of 0.89 with a high improvement category. This is because the ERP learning model contains research-based learning activities where the learning is able to help students combine theory and practice to make solutions and actions to problems encountered through research activities [14]. The research-based learning process is a means to prepare students who are able to become challenges through investigation activities [15].

Figure 1. N-Gain graphs for each indicators in experiment class

This increase in critical thinking skills shows that through learning activities on the ERP learning model in an online scheme it is able to improve students' critical thinking skills. This is in line with Sukarno [15] who stated that the ERP learning model is able to train the skills needed by a researcher such as critical thinking, emotional intelligence, and analytical skills.

The research was conducted in the control class using a conventional learning model, namely the discovery learning model. Learning activities in the control class began by giving a pre-test of critical thinking skills to control class students to determine students' critical thinking skills before being given treatment. Learning activities in the control class begin with the teacher opening learning in the classroom through virtual meetings and then entering the learning stage. The design of the learning activities carried out are as follows:

 Table 5. Learning Activities of Control Class

ISSN: 2502-2318 (Online) ISSN: 2443-2911 (Print)

Homepage : https://journal.uhamka.ac.id/index.php/omega

Phases	Student	Teacher Activities
	Activities	
Stimulati	Pay attention	Showing
on	to the	phenomena
	material	regarding water
	provided by	pollution as
	the teacher	presented on
	and the	student worksheets
	phenomena	and asking
	displayed by	questions to help
	the teacher	students understand
	as presented	the material
	on student	through virtual
	worksheets	meetings.
	through	
	virtual	
	meetings.	
Problem	Discuss the	Guiding students to
Identifica	problem	identify problems
tion	based on the	based on the
	picture of the	images displayed.
	phenomenon	
	presented on	
	the student	
	worksheets.	
	Asking	Guiding students to
	questions	ask questions based
	about	on the pictures of
	environment	the phenomena
	al pollution	displayed.
	material	
	presented on	
	student	
	worksheets.	
	Formulate	Directing students
	hypotheses	to formulate
	to answer the	research
	questions	hypotheses.
	that have	
	been made.	
Data	Observing	Provide assistance
Collectio	the pictures	when conducting
n	displayed by	observation
	the teacher	activities.
	and filling in	
	the	
	observation	

Omega : Jurnal Fisika dan Pendidikan Fisika Vol **7**,No **2** (2021)

	data table on	
	the student	
	worksheet.	
	Gather as	Guiding students in
	much	proving the
	relevant	hypothesis that has
	information	been made.
	as possible to	
	prove	
	whether the	
	hypothesis is	
	true or not.	
Data	Analyze the	Provide assistance
Processin	data and	to analyze the data
g	discuss the	obtained.
	data	
	obtained.	
Verificati	Answer the	Guiding in
on	questions	answering
	that have	questions and
	been	providing
	presented to	reaffirmation of the
	the student	theory obtained.
	worksheet to	
	find theories	
	based on	
	observations.	
Generaliz	Summarizing	Guiding students in
ation	the results of	making
	observation	conclusions.
	activities.	

Based on the activities that have been carried out by students in the control class, the results of the study show that the Discovery Learning model can improve the critical thinking skills of junior high school students. This can be seen from the results of the critical thinking skills test which shows that there is a difference between the results of the pre-test and post-test scores. Based on Table 6, the increase in critical thinking in the control class is included in the medium category with an N Gain score of 0.59.

Table 6. Critical Thinking Result of Control

Class						
Result	Control	Gain	Category			
	Class					

ISSN: 2502-2318 (Online) ISSN: 2443-2911 (Print)

Homepage : https://journal.uhamka.ac.id/index.php/omega

Pre test	61.24	0,59	Middle
Post test	84.44	_	

Based on the increase in each critical thinking sub-indicator in Figure 2, the Discovery Learning model is quite good in improving critical thinking skills on the Strategies and tactics indicator with an increase of 0.73 in the high category. This is because in the Discovery Learning model in training these skills, students are trained to seek and find the information needed independently so that students are able to build their own knowledge [16]. The information possessed by students is able to enrich knowledge and assist in analyzing problems properly so that students are able to make the right decisions [1].

Figure 2. N-Gain graphs for each indicators in control class

This increase in critical thinking skills shows that through learning activities in the Discovery Learning model in an online scheme, it is able to improve students' critical thinking skills. This is in line with Dimyati [3] who argues that the Discovery Learning model aims to develop intellectual abilities, think critically, and solve problems.

Table 7. Total N-Gain Result							
Class		Low	Highe	N-	Cate		
	Ν	est	st	Gain	gory		
		Res	Result	Avera			
		ult		ge			
Experim	2	0,48	0,94	0,70	High		
ent	5						

1.1	0	m		or	9
00	0	TTT	0	5	a

Omega : Jurnal Fisika dan Pendidikan Fisika Vol **7**,No **2** (2021)

Control	2	0,34	0,86	0,59	Middl
	5				e

Based on the results of the study, it is known that the critical thinking skills of the experimental class in total there is an increase of 0.70 in the high category compared to an increase in the control class of 0.59 with the medium category. This shows that the ERP learning model in the experimental class is able to support the improvement of students' critical thinking skills as well as the conventional learning model in the control class. The N Gain test was also carried out on each critical thinking indicator in each class, both the experimental class and the control class. The results in Figure 3, it is known that there is a difference in the increase in critical thinking skills in each indicator between the experimental class and the control class. In the experimental class critical thinking skills on each indicator experienced a higher increase than the control class. Improvement of class critical thinking skills Based on the results of the N gain test on each indicator, it is known that ERP learning models and conventional learning models (discovery learning) are able to improve students' critical thinking skills, but there is a difference between learning models where the ERP learning model has a greater increase in value compared to the conventional model with a higher number of high improvement categories than the conventional learning model.

Figure 3. N-Gain graphs for each indicators in experiment and control class

Based on the N Gain test that has been carried out both in total and for each indicator, there is a difference between the experimental class and the

7

ISSN: 2502-2318 (Online) ISSN: 2443-2911 (Print)

Homepage : https://journal.uhamka.ac.id/index.php/omega

control class, as evidenced by the significance test.

Based on the significance test, the significance value obtained is 0.020 where the value is smaller than 0.05. This shows that the implementation of the ERP learning model in learning is able to have an influence on students' critical thinking skills compared to conventional learning models, the significance value determines that there is a significant difference (difference) in the results of critical thinking skills between classes using the ERP learning model (class experiments) and classes that use conventional learning models (control classes). Based on the results of the N Gain test and the significance test, the two learning models improve students' critical thinking skills and there are significant differences so that to determine the effectiveness of the ERP learning model against conventional learning models (discovery learning) it can be seen based on the effect size test results. The effect size shows the magnitude of the effect of learning using the ERP learning model compared to learning using the conventional learning model. The effect size test shows that the effect size value is 0.77 where the value is included in the large category. These results indicate the effectiveness of the ERP learning model is greater than the conventional learning model (discovery learning) in improving the critical thinking skills of junior high school students in science subjects. The effectiveness of the learning model depends on the learning activities in it. In this study, each activity in each learning model was carried out well with a 100% implementation percentage. This percentage shows that each student activity in each model can be carried out properly and completely in each meeting so that the level of effectiveness obtained is determined by the type of activity that exists in each learning model. The ERP learning model consists of learning activities in which some of the learning activities are in the discovery learning model, but the learning activities in the ERP learning model are complete and more complex than the discovery learning model. In the ERP learning model there are activities to make research stages, review literature, make short reports, create and present mind maps, these activities help students think systematically and coherently so that they help build higher-order thinking skills.

Activities in the ERP learning model are designed based on the Research Skill Development (RSD) Framework to assist teachers in preparing learning activities that support research activities. The RSD Framework is used as a guideline for integrating research activities in learning because understanding of the research experience needs to be actualized both as a product and a process in the learning process. Learning activities in the ERP learning model raise problems regarding learning materials related to the real world so that students get a transformative experience. Research activities that are integrated in learning are able to improve student learning outcomes which include the cognitive, affective, and psychomotor domains [7]. Research activities in research-based learning models such as the ERP learning model can help students build basic skills and be able to stimulate high-order thinking skills, one of critical thinking skills [9]. The ERP learning model is designed based on research with the concept of learning because research-based learning is a trend in current learning [18] and research is an important aspect of learning [8]. The ERP learning model brings the values embedded in research activities into learning so that students can be skilled in applying research skills. The ERP learning model facilitates students in exploring their skills in solving problems they face by combining intellectual and practical activities.

The ERP learning model is designed to train students to have 21st century skills, especially in the way of thinking dimension, one of which includes critical thinking skills. The ERP learning model can be a solution to facilitate 21st century learning because the activities in this learning model are able to facilitate various skills mastered in the 21st century which include way of thinking, way of work, tool of work, living in the world. This is supported by the results of Haryati's research [7] which states that ERP learning model activities are able to facilitate students in training High Order Thinking Skills (HOTs) and 21st century moral values. Thus, the application of ERP learning models in online schemes in science learning is able to improve critical thinking skills of junior high school students because the ERP learning model and learning model are more effective in improving critical thinking skills of junior high

Homepage : https://journal.uhamka.ac.id/index.php/omega

school students than conventional learning models (discovery learning).

SUMMARY

Based on the results of research that has been carried out in one of the junior high schools in the city of Magelang on science learning about environmental pollution, this study obtained several conclusions. These conclusions include:

- 1. Based on the significance test that has been carried out, the significance value obtained is 0.020 where the value is smaller than 0.05, then H_0 in this study is rejected and H_1 is accepted so that it can be stated that there is a significant difference in the results of critical thinking skills between the classes. using ERP learning model and conventional learning model.
- 2. Based on the effectiveness test that has been carried out, the ERP learning model has a large effectiveness of 0.77 with a large category. Thus, the ERP learning model in the online scheme is very effective in improving the critical thinking skills of junior high school students in science learning about environmental pollution.

ACKNOWLEDGEMENTS

The author would like to thank Allah SWT, family, supervisors, teachers and school staff, as well as colleagues who have helped in the process of this research.

REFERENCES

- Agustriana, A., Ningrum, E., & Somantri, L. (2015). Pengaruh Penggunaan Model Pembelajaran Discovery Learning terhadap Kemampuan Berpikir Kritis Siswa (Penelitian Quasi Eksperimen di Kelas XI IPS SMA Negeri 1 Dukupuntang). Analogi Pendidikan Geografi. Analogi Pendidikan Geografi, 2015.
- [2] Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Lawrence Erlbaum, 2nd ed.

ω omega

Omega : Jurnal Fisika dan Pendidikan Fisika Vol **7**,No **2** (2021)

- [3] Dimyati & Mudiono. (2006). Belajar dan Pembelajaran. Jakarta: Rineka Cipta.
- [4] Ennis, R. H. (2018). Critical thinking across the curriculum: A vision. Topoi, 37(1), 165-184.
- [5] Facione, P. A. (2011). Critical Thinking: What It Is and Why It Counts. Millbrae: Measured Reasons and The California Academic Press.
- [6] Hake, R, R. (1999). Analyzing Change/Gain Scores. AREA-D American Education Research Association's Devision.D, Measurement and Reasearch Methodology.
- [7] Haryati, S., Sukarno, S., Siswanto S., Muhlisin A., Anggraeni, C W., Brata, W W W. (2020). Development of Engage, Research, and Present (ERP) Instructional Model to Promote HOTs and 21st Century Moral Values: A Fuzzy Delphy Method. Proceedings of the 7th Mathematics, Science, and Computer Science Education International Seminar, MSCEIS 2019, 12 October 2019, Bandung, West Java, Indonesia.
- [8] Junpeng, P., & Tungkasamit, A. (2014). The continuing professional development of the assessment through research-based learning in higher education of Thailand. Procedia-Social and Behavioral Sciences, 143, 737-742.
- [9] Kardash, C. M., & Edwards, O. V. (2012). Thinking and behaving like scientists: Perceptions of undergraduate science interns and their faculty mentors. Instructional Science, 40, 875–899.
- [10] Nadeak, B., Juwita, C. P., Sormin, E., & Naibaho, L. (2020). Hubungan kemampuan berpikir kritis mahasiswa dengan penggunaan media sosial terhadap capaian pembelajaran pada masa pandemi Covid-19. Jurnal Konseling dan Pendidikan, 8(2), 98-104.
- [11] Nuryanti, L., Zubaidah, S., & Diantoro, M. (2018). Analisis kemampuan berpikir kritis

ISSN: 2502-2318 (Online) ISSN: 2443-2911 (Print)

Homepage : https://journal.uhamka.ac.id/index.php/omega

siswa SMP. Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan, 3(2), 155-158.

- [12] Prihartiningsih., Zubaidah, S., & Kusairi. (2016). Kemampuan Berpikir Kritis Siswa SMP pada Materi Klasifikasi Makhluk Hidup. Prosiding Seminar Nasional Pendidikan IPA Pascasarjana UM, (1)1053—1062.
- [13] Redecker, C., et al. (2011). The Future of Learning: Preparing for Change. Luxembourg: Publications Office of the European Union.
- [14] Savery, J. R. (2006). Overview of problembased learning: Definitions and distinctions. Interdisciplinary Journal of Problem-based Learning, 1(1), 3.
- [15] Sukarno, S., Haryati, S., Siswanto, S. (2020) .
 Model Pembelajaran ERP (Engage, Research, Present) (Mengintegrasikan Aktivitas Riset Dalam Konteks Pembelajaran .
- [16] Taufik. (2010). Strategi Belajar Mengajar. Jakarta: Inti Prima .
- [17] Thalheimer, W., & Cook, S. (2002). How to calculate effect sizes from published research: A simplified methodology. Work-Learning Research, 1, 1-9.
- [18] Wannapiroon, P. (2014). Development of research-based blended learning model to enhance graduate students' research competency and critical thinking skills. Procedia-Social and behavioral sciences, 136, 486-490.
- [19] Waryanto, N. H. (2006). Online Learning sebagai salah satu Inovasi Pembelajaran. Jurnal Phitagoras, 2(1).
- [20] Yuliati, L. (2013). Efektivitas Bahan Ajar IPA Terpadu terhadap Kemampuan Berpikir Tingkat Tinggi Siswa SMP. Jurnal Pendidikan Fisika Indonesia, 9(1), 55–57. DOI: <u>http://dx.doi.org/10.15294/jpfi.v9i1.2580</u>.