Kajian Eksperimental Kinerja Photovoltaic dengan Penambahan Thermoelectric Generator
DOI:
https://doi.org/10.22236/metalik.v4i1.20041Keywords:
photovoltaic, thermoelectric, generator, efficiencyAbstract
Abstrak
Salah satu faktor yang mempengaruhi efisiensi sistem photovoltaic adalah temperatur permukaan sel. Pada penelitian ini digunakan thermoelectric untuk mengambil panas dari permukaan sel yang diharapkan dapat menurunkan temperatur sel sehingga dapat meningkatkan efisiensinya. Tujuan dari penelitian ini adalah untuk mendapatkan peningkatan efisiensi dari hasil penuruan temperatur permukaan sel. Metodologi penelitian yang digunakan adalah eksperimental, dengan cara perbandingan efisiensi pada sistem photovoltaic tanpa thermoelectric generator dan sistem photovoltaic dengan thermoelectric generator. Sistem photovoltaic yang digunakan adalah photovoltaic polycristalin (Si) dengan daya sebesar 50 Wp sedangkan untuk sistem thermoelectric menggunakan thermoelectric generator tipe TEG SP1848-27145 SA. Pengambilan data dilakukan dengan pengukuran yang dimulai dari pukul 08.00 WIB sampai 15.00 WIB. Hasil penelitian mendapatkan bahwa efisiensi maksimum yang dihasilkan sistem photovoltaic tanpa thermoelectric generator sebesar 5,64 % sedangkan hasil efisiensi maksimum pada photovoltaic dengan thermoelectric generator sebesar 5,39 %.
Abstract
One of the factors that affect the efficiency of the photovoltaic system is the cell surface temperature. In this research, thermoelectric is used to take heat from the cell surface which is expected to lower the cell temperature so as to increase its efficiency. The purpose of this study was to obtain an increase in efficiency from the decrease in cell surface temperature. The research methodology used is experimental, by comparing the efficiency of the photovoltaic system without a thermoelectric generator and the photovoltaic system with a thermoelectric generator. The photovoltaic system used is a photovoltaic polycristalin (Si) with a power of 50 Wp, while the thermoelectric system uses a thermoelectric generator type TEG SP1848-27145 SA. Data collection was carried out by measuring starting from 08.00 WIB to 15.00 WIB. The results showed that the maximum efficiency of the photovoltaic system without a thermoelectric generator was 5.64%, while the maximum efficiency of the photovoltaic system with a thermoelectric generator was 5.39%.
Downloads
References
Adhe, R. R., Nugroho, G., & Budiono, C. (2016). Analisa Performansi dan Monitoring Solar Photovoltaic System (SPS) pada Pembangkit Listrik Tenaga Surya di Tuban Jawa Timur. Jurnal Teknik POMITS, 1–8.
Adzikri, F., Notosudjono, D., & Suhendi, D. (2017). Strategi Pengembangan Energi Terbarukan. Jurnal Online Mahasiswa (JOM) Bidang Teknik Elektro, 1(1), 1–13.
Alifyanti, D. F. (2016). Pengaturan Tegangan Pembangkit Listrik Tenaga Surya (PLTS) 1000 Watt. Jurnal Kajian Teknik Elektro, 1(1), 79–95.
Ambarita, H., Sitanggang, C., & Sipayung, R. (2020). Performance of a Photovoltaic Solar Cold Storage. Journal of Physics: Conference Series, 1542(1), 1–5. https://doi.org/10.1088/1742-6596/1542/1/012042
Anglart, H. (2010). Thermal- Hydraulics in Nuclear Systems. In KTH Library. Stockholm: KTH Royal Institute of Technology.
Armstrong, S., & Hurley, W. . (2010). A Thermal Model for Photovoltaic Panels Under Varying Atmospheric Conditions. Applied Thermal Engineering, 30(11–12), 1488–1495. https://doi.org/10.1016/j.applthermaleng.2010.03.012
Azhar, M., & Satriawan, D. A. (2018). Implementasi Kebijakan Energi Baru dan Energi Terbarukan Dalam Rangka Ketahanan Energi Nasional. Journal Adminitrative Law & Governance, 1(4), 398–412.
Budi Yuwono. (2005). Optimalisasi Panel Sel Surya dengan Menggunakan Sistem Pelacak Berbasis Mikrokontroler AT89C51. Universitas Sebelas Maret, Surakarta.
Buni, M. J. B., Al-walie, A. A. K., & Al-asadi, K. A. N. (2018). Effect of Solar Radiation on Photovoltaic Cell. International Research Journal of Advanced Engineering and Science, 3(3), 47–51.
Burhani, K., Ramelan, & Naryanto, R. F. (2014). Pengembangan Media Pembelajaran Perpindahan Panas Radiasi dengan Variasi Beda Perlakuan Permukaan Spesimen Uji. Journal of Mechanical Engineering Learning, 3(2), 86–93.
Cahyono, G. R., Ansyah, P. R., & Munthaha, M. (2020). Pengaruh Variasi Kecepatan Hembusan Udara Terhadap Temperatur, Daya Output dan Efisiensi Pada Pendinginan Panel Surya. Infotekmesin, 11(02), 141–146. https://doi.org/10.35970/infotekmesin.v11i2.259
Callejo Luis, H., Saavedra, S. G., & Gómez, V. A. (2019). A Review of Photovoltaic Systems, Design, Operation and Maintenance. Solar Energy, 188, 426–440. https://doi.org/10.1016/j.solener.2019.06.017
Daghigh, R., & Khaledian, Y. (2018). Effective Design, Theoretical and Experimental Assessment of a Solar Thermoelectric Cooling-Heating System. Solar Energy, 162(October 2017), 561–572. https://doi.org/10.1016/j.solener.2018.01.012
Dwivedi, P., Sudhakar, K., Soni, A., & Solomin, E. (2020). Advanced Cooling Techniques of P. V. Modules: A State of Art. Case Studies in Thermal Engineering, 21(100674), 1–17. https://doi.org/10.1016/j.csite.2020.100674
Gede Widayana. (2012). Pemanfaatan Energi Surya. Jurnal Pendidikan Teknologi Dan Kejujuran (JPTK), 9(1), 37–46. https://doi.org/http:/dx.doi.org/10.23887/jptk-undiksha.v9i1.2876
Ginanjar, Hiendro, A., & Suryadi, D. (2019). Perancangan dan Pengujian Sistem Pembangkit Listrik Berbasis Termoelektrik dengan Menggunakan Kompor Surya sebagai Media Pemusat Panas. Jurnal Teknik Elektro Universitas Tanjungpura, 2(1).
Ginley, D. S., & Cahen, D. (2011). Fundamentals of Materials for Energy and Environmental Sustainability. Cambridge: Cambridge University Press.
Gultom, T. T. (2015). Pemanfaatan Photovoltaic sebagai Pembangkit Listrik Tenaga Surya. Jurnal Mudira Indure, 1(3), 33–42.
Hahn, D. W., & Ozisik, M. N. (2012). Heat Conduction (3rd ed.). New Jersey: John Wiley & Sons, Inc.
Hakim, L. (2016). Analisa Teoritis Laju Aliran Kalor pada Ketel Uap Pipa Api Mini Industri Tahu di Tinjau dari Koefisien Perpindahan Panas Menyeluruh. Surya Teknika, 1(4), 49–54.
Holman, J. . (2010). Heat Transfer (10th ed.). New York: McGraw-Hill.
Jager, K., Isabella, O., Smets, A. H. ., Swaaij, R. A. C. M. . Van, & Zeman, M. (2014). Solar Energy: Fundamentals, Technology, and Systems. Delft University of Technology.
Kwon, S., Kim, Y., Lee, S., & Kim, J. C. (2012). Measurement of The Figure of Merit of Thermoelectric Devices. XX IMEKO World Congress.
Latif, M., & Hayati, N. (2015). Potensi Energi Listrik pada Gas Buang Sepeda Motor. Jurnal Rekayasa Elektrika, 11(5), 163–168. https://doi.org/10.17529/jre.v11i5.2957
Long, C., & Sayma, N. (2009). Heat Transfer. London: Bookboon.com.
Mackowski, D. W. (2011). Conduction Heat Transfer Notes for MECH 7210. Auburn: Mechanical Engineering Department Auburn University.
Mahan, G. . (2016). Introduction to Thermoelectrics. APL Materials, 4(104806), 1–8. https://doi.org/10.1063/1.4954055
Manikandan, S., & Kaushik, S. . (2016). Energy and Exergy Analysis of Solar Heat Pipe Based Annular Thermoelectric Generator System. Solar Energy, 135, 569–577. https://doi.org/10.1016/j.solener.2016.06.031
Marandi, O. F., Ameri, M., & Adelshahian, B. (2018). The Experimental Investigation of a Hybrid Photovoltaic-Thermoelectric Power Generator Solar Cavity-Receiver. Solar Energy, 161, 38–46. https://doi.org/10.1016/j.solener.2017.12.039
Mardini-Bovea, J., Torres-díaz, G., Sabau, M., De-la-Hoz-Franco, E., Niño-Moreno, J., & Jessid Pacheco-Torres, P. (2019). A Review to Refrigeration with Thermoelectric Energy Based on the Peltier Effect. Revista DYNA, 86(208), 9–18. https://doi.org/http://doi.org/10.15446/dyna.v86n208.72589
Mariano, J. R. L., Lin, Y., Liao, M., & Ay, H. (2021). Analysis of Power Generation for Solar Photovoltaic Module with Various Internal Cell Spacing. Sustainability, 13(6364), 1–16. https://doi.org/https://doi.org/10.3390/su13116364
Muchammad, & Setiawan, H. (2011). Peningkatan Efisiensi Modul Surya 50 Wp dengan Penambahan Reflektor. Prosiding Seminar Nasional Sains Dan Teknologi, 45–50.
Najafi, H., & Woodbury, K. A. (2013). Optimization of a Cooling System Based on Peltier Effect for Photovoltaic Cells. Solar Energy, 91, 152–160. https://doi.org/10.1016/j.solener.2013.01.026
Nakamura, S., & Nishioka, K. (2016). Reduction of Temperature In Silicon Photovoltaic Module Using Thermal Radiation Coating. Matec Web of Conferences, 65(04001), 1–4. https://doi.org/10.1051/matecconf/20166504001
Nurdinawati, V. (2017). Studi Termoelektrik Generator Tipe TEG SP1848 27145 SA. Jurnal Ilmiah Elektrokrisna, 6(1), 33–41.
Ozakin, A. N., Karsli, S., Kaya, F., & Gulluce, H. (2016). The Heat Recovery With Heat Transfer Methods from Solar Photovoltaic Systems. Journal of Physics, 012050(707), 1–6. https://doi.org/10.1088/1742-6596/707/1/012050
Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of Renewable Energy Sources in Environmental Protection : A Review. Renewable and Sustainable Energy Reviews, 15(3), 1513–1524. https://doi.org/10.1016/j.rser.2010.11.037
Patel, D., Mehta, S. B., & Shah, P. (2015). Review of Thermoelectricity to Improve Energy Quality. International Journal of Emerging Technologies and Innovative Research, 2(3), 847–850.
Patidar, S. (2018). Applications of Thermoelectric Energy : A Review. International Journal for Research in Applied Science & Engineering Technology, 6(5), 1992–1996. https://doi.org/10.22214/ijraset.2018.5325
Prasetyo, Y., Salim, A. T. A., Indarto, B., Sulistyono, Pangestu, M. A., Habibi, M. R., … Rafi, H. N. (2019). Karakteristik Termoelektrik TEC Bervariasi Tipe dengan Variasi Pembebanan Resistor. Jurnal Energi Dan Teknologi Manufaktur, 02(01), 36–41.
Purwanto, A. (2020). Pemanfaatan Energi Panas Terbuang Tungku Pandai Besi sebagai Sumber Energi Listrik Alternatif Menggunakan Generator Termoelektrik (TEG) (Universitas Jember). Retrieved from https://repository.unej.ac.id/handle/123456789/97435
Ranabhat, K., Patrikeev, L., Revina, A. A., Andrianov, K., Lapshinsky, V., & Sofronova, E. (2016). An Introduction to Solar Cell Technology. Journal of Applied Engineering Science, 14(4), 481–491. https://doi.org/10.5937/jaes14-10879
Renge, S., Barhaiya, Y., Pant, S., & Sharma, S. (2017). A Review on Generation of Electricity using Peltier Module. International Journal of Engineering Research & Technology (IJERT), 6(01), 453–457.
Rera Aga Salihat. (2015). Pengaruh Modifikasi Sel Fotovoltaik terhadap Kinerjanya dalam Menghasilkan Arus dan Tegangan dengan Sistem Larutan Elektrolit KI/KI3. Universitas Andalas.
Rifal, M., Dera, N. S., & Pido, R. (2020). Perancangan Prototype Hybrid Energi Antara Solar Cell dan Thermoelectric Generator (TEG). Journal of Infrastructure and Science Engineering, 3(2), 4–9.
Rifky, & Gaos, Y. S. (2020). Pengembangan Model Pendingin Kabin City Car Bertenaga Surya Menggunakan Photovoltaics (PV) dan Thermoelectric (TEC). Teknobiz, 10(1), 34–40.
Rohit, G., Manaswini, D., Kotebavi, V., & S R, N. (2017). Performance Study of Thermoelectric Generator. AIP Conference Proceedings, 1859, 1–6. https://doi.org/10.1063/1.4990247
Rokhimi, I. N., & Pujayanto. (2015). Alat Peraga Pembelajaran Laju Hantaran Kalor Konduksi. Seminar Nasional Fisika Dan Pendidikan Fisika (SNFPF), 6(1), 270–274.
Sayigh, A. (2017). Photovoltaics for Sustainable Electricity and Buildings (1st ed.). Brighton: Springer.
Shittu, S., Li, G., Akhlaghi, Y. G., Ma, X., Zhao, X., & Ayodele, E. (2019). Advancements in Thermoelectric Generators for Enhanced Hybrid Photovoltaic System Performance. Renewable and Sustainable Energy Reviews, 109, 24–54. https://doi.org/10.1016/j.rser.2019.04.023
Shodiq, J. (2016). Simulasi Performa Photovoltaics Berbahan Nanokristalin SnO2. In Etheses University of Maulana Malik Ibrahim State Islamic. Retrieved from http://etheses.uin-malang.ac.id/id/eprint/5826
Soltani, S., Kasaeian, A., Sarrafha, H., & Wen, D. (2017). An Experimental Investigation of a Hybrid Photovoltaic/Thermoelectric System with Nanofluid Application. Solar Energy, 155, 1033–1043. https://doi.org/10.1016/j.solener.2017.06.069
Sripadmanabhan, S., Aravind, C., Chong, K., Saidur, R., Faizal, M., Abubakar, S., & Paiman, S. (2020). A Review on Various Configurations of Hybrid Concentrator Photovoltaic and Thermoelectric Generator System. Solar Energy, 201(February), 122–148. https://doi.org/10.1016/j.solener.2020.02.090
Staton, D. A., & Cavagnino, A. (2008). Convection Heat Transfer and Flow Calculations Suitable for Electric Machines Thermal Models. Journal Industrial Electronics, 55(10), 3509–3516. https://doi.org/10.1109/TIE.2008.922604
Suwarti, Wahyono, & Prasetiyo, B. (2018). Analisis Pengaruh Intensitas Matahari, Suhu Permukaan & Sudut Pengarah terhadap Kinerja Panel Surya. Jurnal Teknik Energi, 14(3), 78–85. https://doi.org/http://dc.doi.org/10.32497/eksergi.v14i3.1373
Tritt, T. . (2002). Thermoelectric Materials: Principles, Structure, Properties, and Applications. In Encyclopedia of Materials: Science and Technology (pp. 1–11). https://doi.org/10.1016/b0-08-043152-6/01822-2
Utama, A. C. (2019). Analisa Perbandingan Daya Output PLTS Menggunakan Pantulan Cahaya Kaca Cermin dan Cahaya Matahari Langsung. Universitas Muhammadiyah Sumatera Utara.
Valter, G., & Elena, C. (2020). The Elusive Thomson Effect in Thermoelectric Devices. Experimental Investigation from 363 K to 213 K on Various Peltier Modules. Metals, 10(291). https://doi.org/10.3390/met10020291
Xiang, B., Yuan, Y., Ji, Y., Cao, X., & Zhou, J. (2020). Thermal and Electrical Performance of a Novel Photovoltaic-Thermal Road. Solar Energy, 199, 1–18. https://doi.org/10.1016/j.solener.2020.02.021
Xu, L., Li, S., Jiang, J., Liu, T., Wu, H., Wang, J., & Li, X. (2020). The Influence of Dust Deposition on the Temperature of Soiling Photovoltaic Glass Under Lighting and Windy Conditions. Solar Energy, 199, 491–496. https://doi.org/10.1016/j.solener.2020.02.036
Yin, E., & Li, Q. (2020). Unsteady-State Performance Comparison of Tandem Photovoltaic-Thermoelectric Hybrid System and Conventional Photovoltaic System. Solar Energy, 211, 147–157. https://doi.org/10.1016/j.solener.2020.09.049
Yin, E., Li, Q., & Xuan, Y. (2019). Experimental Optimization of Operating Conditions for Concentrating Photovoltaic-Thermoelectric Hybrid System. Journal of Power Sources, 422, 25–32. https://doi.org/10.1016/j.jpowsour.2019.03.034
Zhang, M., Tian, Y., Xie, H., Wu, Z., & Wang, Y. (2019). International Journal of Heat and Mass Transfer Influence of Thomson effect on the Thermoelectric Generator. International Journal of Heat and Mass Transfer, 137, 1183–1190. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.155
Zhang, X., Zhao, X., Smith, S., Xu, J., & Yu, X. (2012). Review of R & D Progress and Practical Application of the Solar Photovoltaic/Thermal (PV/T) Technologies. Renewable and Sustainable Energy Reviews, 16(1), 599–617. https://doi.org/10.1016/j.rser.2011.08.026
Zhou, D., & Chu-Ping, S. (2015). Study on Thermoelectric Material and Thermoelectric Generator. Journal of Chemical and Pharmaceutical Research, 7(3), 395–401.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 METALIK : Jurnal Manufaktur, Energi, Material Teknik

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.













