Main Article Content
Abstract
According to the World Health Organization (WHO), Tuberculosis and Pneumonia are two of the 10 biggest causes of death in the world. To reduce the risk of contracting both diseases, early and accurate diagnosis is needed. One way to achieve early and accurate diagnosis is to integrate image processing into the diagnosis process. The aim of this research is to test the CNN Inception V3 algorithm in identifying a case of Tuberculosis and Pneumonia disease by using a photo of electromagnetic radiation from a person's body wavelength. From the photos, the results obtained were the percentage of accuracy of x-ray photos of normal lungs is 99.63%, the percentage of accuracy of x-ray photos of tuberculosis lungs is 99.82% and the percentage of accuracy of x-ray photos of lungs with pneumonia is 99.69%.
Keywords
Article Details
References
- Andika, L. A., Pratiwi, H., & Handajani, S. S. (2019). Klasifikasi penyakit pneumonia menggunakan metode convolutional neural network dengan optimasi adaptive momentum. Indonesian Journal of Statistics and Its Applications, 3(3), 331-340. doi: 10.29244/ijsa.v3i3.560.
- Azizah, F. N., & Juniati, D. (2021). Analisis Jenis Penyakit Paru-Paru Berdasarkan Chest X-Ray Menggunakan Metode Fuzzy C-Means. MATHunesa: Jurnal Ilmiah Matematika, 9(2), 322-331. doi: 10.26740/mathunesa.v9n2.p322-331.
- Cholifah, W. N., Yulianingsih, Y., & Sagita, S. M. (2018). Pengujian black box testing pada aplikasi action & strategy berbasis android dengan teknologi phonegap. STRING (Satuan Tulisan Riset dan Inovasi Teknologi), 3(2), 206-210. doi: 10.30998/string.v3i2.3048.
- Fauziah, K. N., Sudianto, S., & Nabella, S. D. (2022). Pengaruh Kelengkapan Data, Ketelitian, Kecepatan Dan Ketepatan Waktu Terhadap Kepuasan Konsumen Pada Pt Federal International Finance (Fif) Cabang Batam. Postgraduate Management Journal, 2(1), 40-51. doi: 10.36352/pmj.v2i1.418.
- Pratiwi, V. R., & Pardee, J. (2022). Image Captioning Menggunakan Metode Inception-V3 dan Transformer. e-Proceeding FTI.
- Rahmayani, C. K. (2023). Faktor Hambatan dalam Akses Pelayanan Kesehatan pada Puskesmas di Indonesia: Scoping Review. Jurnal Ilmiah Permas: Jurnal Ilmiah STIKES Kendal, 13(4), 1337-1344.
- Supriyanto, A., Kusuma, W. A., & Rahmawan, H. (2022). Klasifikasi Kanker Tumor Payudara Menggunakan Arsitektur Inception-V3 Dan Algoritma Machine Learning. Jurnal ALAZHAR Indonesia Seri Sains Dan Teknologi, 7(3), 187-193. doi: 10.36722/sst.v7i3.1284.
- Tarigan, L. Y., & Iskandar, D. (2022). Pemeriksaan Adenosine Deaminase (ADA) sebagai Alternatif Diagnosis TB pada Anak. Cermin Dunia Kedokteran, 49(7), 382-385.
- Unicef. (2022). “Tackling pneumonia could avert almost 9 million child deaths this decade.”. [Online]. Available: https://data.unicef.org/wp-content/uploads/20 20/01/Johns-Hopkins-LiST-pneumonia-projec tions-English_2020.pdf
- World Health Organization. (2022). “Global tuberculosis report 2022.”. [Online]. Available: https://iris.who.int/bitstream/handle/10665/36 3752/9789240061729-eng.pdf?sequence=1
References
Andika, L. A., Pratiwi, H., & Handajani, S. S. (2019). Klasifikasi penyakit pneumonia menggunakan metode convolutional neural network dengan optimasi adaptive momentum. Indonesian Journal of Statistics and Its Applications, 3(3), 331-340. doi: 10.29244/ijsa.v3i3.560.
Azizah, F. N., & Juniati, D. (2021). Analisis Jenis Penyakit Paru-Paru Berdasarkan Chest X-Ray Menggunakan Metode Fuzzy C-Means. MATHunesa: Jurnal Ilmiah Matematika, 9(2), 322-331. doi: 10.26740/mathunesa.v9n2.p322-331.
Cholifah, W. N., Yulianingsih, Y., & Sagita, S. M. (2018). Pengujian black box testing pada aplikasi action & strategy berbasis android dengan teknologi phonegap. STRING (Satuan Tulisan Riset dan Inovasi Teknologi), 3(2), 206-210. doi: 10.30998/string.v3i2.3048.
Fauziah, K. N., Sudianto, S., & Nabella, S. D. (2022). Pengaruh Kelengkapan Data, Ketelitian, Kecepatan Dan Ketepatan Waktu Terhadap Kepuasan Konsumen Pada Pt Federal International Finance (Fif) Cabang Batam. Postgraduate Management Journal, 2(1), 40-51. doi: 10.36352/pmj.v2i1.418.
Pratiwi, V. R., & Pardee, J. (2022). Image Captioning Menggunakan Metode Inception-V3 dan Transformer. e-Proceeding FTI.
Rahmayani, C. K. (2023). Faktor Hambatan dalam Akses Pelayanan Kesehatan pada Puskesmas di Indonesia: Scoping Review. Jurnal Ilmiah Permas: Jurnal Ilmiah STIKES Kendal, 13(4), 1337-1344.
Supriyanto, A., Kusuma, W. A., & Rahmawan, H. (2022). Klasifikasi Kanker Tumor Payudara Menggunakan Arsitektur Inception-V3 Dan Algoritma Machine Learning. Jurnal ALAZHAR Indonesia Seri Sains Dan Teknologi, 7(3), 187-193. doi: 10.36722/sst.v7i3.1284.
Tarigan, L. Y., & Iskandar, D. (2022). Pemeriksaan Adenosine Deaminase (ADA) sebagai Alternatif Diagnosis TB pada Anak. Cermin Dunia Kedokteran, 49(7), 382-385.
Unicef. (2022). “Tackling pneumonia could avert almost 9 million child deaths this decade.”. [Online]. Available: https://data.unicef.org/wp-content/uploads/20 20/01/Johns-Hopkins-LiST-pneumonia-projec tions-English_2020.pdf
World Health Organization. (2022). “Global tuberculosis report 2022.”. [Online]. Available: https://iris.who.int/bitstream/handle/10665/36 3752/9789240061729-eng.pdf?sequence=1