Analisis Produktivitas Padi Menggunakan UAV Multispektral Dan Support Vector Regression Dengan Optimasi Grid Search Di Balumbang Jaya, Bogor Barat

Nur Annisa Indah Lestari, Erwin Hermawan, Sahid Agustian Hudjimartsu, Arif K Wijayanto, Ahmad Junaedi, Miftahul B.R. Khamid

Abstract

Rice productivity is an important indicator of national food security, so an accurate analytical approach is needed to monitor and predict harvest yields spatially. This research aims to develop a rice productivity prediction model using remote sensing technology with Unmanned Aerial Vehicle (UAV) and Support Vector Regression (SVR) method. The study was conducted in Balumbang Jaya Village, West Bogor Regency, with a limited sample size of 30 rie field plots. Five vegetation indices were analyzed, including: Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Normalized Difference Red Edge (NDRE), Optimized Soil-Adjusted Vegetation Index (OSAVI), and Leaf Chlorophyll Index (LCI). The research methodology integrated remote sensing techniques, multispectral image processing, and machine learning. The optimal SVR parameters were obtained through grid search with sigma=1 and cost=1. The Synthetic Minority Over-sampling Technique (SMOTE) was applied in initial data clasification stage to balance the productivity class distribution, although this study focused on regression. The results show that the SVR model with Radial Basis Function (RBF) kernel can explain 87.6% of rice productivity variability with a Root Mean Squared Error (RMSE) of 0.29 ton/ha. The findings confirm the effectiveness of a multidisciplinary approach in developing accurate and innovative rice productivity prediction models. This model has the potential to be used as a decision-making tool in agricultural land management that is more efficient and responsive to environmental variability

Full text article

Generated from XML file

References

Ariani, D., Prasetyo, Y., & Sasmito, B. (2020). Estimasi Tingkat Produktivitas Padi Berdasarkan Algoritma NDVI, EVI dan SAVI Menggunakan Citra Sentinel-2 Multitemporal (Studi Kasus: Kabupaten Pekalongan, Jawa Tengah). In Jurnal Geodesi Undip Januari (Issue 9).

Bak, H. J., Kim, E. J., Lee, J. H., Chang, S., Kwon, D., Im, W. J., Kim, D. H., Lee, I. H., Lee, M. J., Hwang, W. H., Chung, N. J., & Sang, W. G. (2025). Canopy-Level Rice Yield and Yield Component Estimation Using NIR-Based Vegetation Indices. Agriculture (Switzerland), 15(6). https://doi.org/10.3390/agriculture15060594.

Bappeda Kota Bogor. (2023). Laporan Evaluasi RT/RW dan Perubahan Penggunaan Lahan 2018–2023.

Carracelas, G., Ballester, C., Marchesi, C., Roel, A., & Hornbuckle, J. (2024). Assessing Drone-Based Remote Sensing Indices for Monitoring Rice Nitrogen Plant Status Under Different Irrigation Techniques. Agronomy, 14(12). https://doi.org/10.3390/agronomy14122976.

Fajri, Z. A., Sanjoto, T. B., Akhsin, W., Nur, B., & Infra, N. (2022). Model Estimasi Produktivitas Padi Menggunakan NDVI di Wilayah Kabupaten Demak Tahun 2021. 8(3), 279–289.

Gandhi, P., & Darmawan, I. (2022). Persepsi Kelompok Tani Terhadap Multifungsi Sawah Dan Strategi Keberlanjutan Kebijakan PLP2B Di Kota Bogor. 21(16).

Irawan, Y., Wahyuni, R., & Ordila, R. (2024). Comparative Analysis of Machine Learning Algorithms with SMOTE and Boosting Techniques in Accuracy Improvement. The Indonesian Journal of Computer Science, 13(5). https://doi.org/10.33022/ijcs.v13i5.4386.

Jannah, A., Rosyad, A., Masnang, A., Anggarawati, S., Arifien, Y., Wibaningwati, D. B., Fitriani, A., Maad, F., Rosiana, A., Febrian, R., Bakri, A., & Jono, M. (2020). Pemberdayaan Wanita Tani dalam Penyediaan Benih untuk Mendukung Urban Farming di Kelurahan Balumbang Jaya , Empowerment Of Farming Women In Providing Seeds To Support Urban Farming In Balumbang Jaya Village , Bogor City. 5(2), 169–174.

Komang, N., Mita, A., Siddiq, M. F., Laurnt, A., Erviana, R., & Kurniawan, R. (2024). Optimalisasi Ketahanan Pangan : Perbandingan Metode Machine Learning dan Time Series dalam Memprediksi Produksi Padi di Jawa Tengah. 2024(Senada), 140–153.

Liu, S., Zeng, W., Wu, L., Lei, G., Chen, H., Gaiser, T., & Srivastava, A. K. (2021). Simulating the Leaf Area Index of Rice from Multispectral Images. Remote Sensing, 13(18), 1–22. https://doi.org/10.3390/rs13183663.

Liu, Z., Ju, H., Ma, Q., Sun, C., Lv, Y., Liu, K., Wu, T., & Cheng, M. (2024). Rice Yield Estimation Using Multi-Temporal Remote Sensing Data and Machine Learning: A Case Study of Jiangsu, China. Agriculture (Switzerland), 14(4). https://doi.org/10.3390/agriculture14040638.

Marsuhandi, A. H., Soleh, A. M., Wijayanto, H., & Domiri, D. D. (2020). Pemanfaatan Ensemble Learning dan Penginderaan Jauh untuk Pengklasifikasian Jenis Lahan Padi. Seminar Nasional Official Statistics, 2019(1), 188–195. https://doi.org/10.34123/semnasoffstat.v2019i1.247.

Masdian, A. R., Bashit, N., & Hadi, F. (2023). Analisis Produktivitas Padi Menggunakan Algoritma Machine Learning Random Forest di Kabupaten Batang Tahun 2018 - 2022. Elipsoida : Jurnal Geodesi Dan Geomatika, 6(1), 43–51. https://doi.org/10.14710/elipsoida.2023.19023.

Nadzirah, R., Indarto, I., & Brillyansyah, D. F. (2022). Studi Pendahuluan Aplikasi Citra Sentinel untuk Deteksi Luas Sawah Irigasi di Kabupaten Jember. Jurnal Ilmiah Rekayasa Pertanian Dan Biosistem, 10(1), 24–38. https://doi.org/10.29303/jrpb.v10i1.319.

Quille-Mamani, J., Ramos-Fernández, L., Huanuqueño-Murillo, J., Quispe-Tito, D., Cruz-Villacorta, L., Pino-Vargas, E., Flores del Pino, L., Heros-Aguilar, E., & Ángel Ruiz, L. (2025). Rice Yield Prediction Using Spectral and Textural Indices Derived from UAV Imagery and Machine Learning Models in Lambayeque, Peru. Remote Sensing, 17(4). https://doi.org/10.3390/rs17040632.

Rahmawati, S., Wibowo, A., & Masruriyah, A. F. N. (2024). Improving Diabetes Prediction Accuracy in Indonesia: A Comparative Analysis of SVM, Logistic Regression, and Naive Bayes with SMOTE and ADASYN. Jurnal RESTI, 8(5), 607–614. https://doi.org/10.29207/resti.v8i5.5980.

Sunito, Q. A. M. and M. A. (2019). Pengaruh Jenis Perubahan Fungsi Rumah terhadap Taraf Hidup dan Kondisi Sosial Budaya Masyarakat. Departemen Sains Komunikasi Dan Pengembangan Masyarakat, Fakultas Ekologi Manusia, IPB, Vol 3.

Tamara, N., Wigena, A. H., & Sartono, B. (2021). Classification Model for Paddy Growth Phase Prediction with Machine Learning Based on Satellite Imagery. Globë, 23(2), 101–112.

Wardana, K. P. W., Subiyanto, S., & Hani’ah. (2019). Analisis Tinggi Tanaman Padi Menggunakan Model 3D Hasil Pemotretan UAV dengan Pengukuran Lapangan. Jurnal Geodesi UNDIP, 8(1), 378–387.

Yanuareva, Z. T., Yanuar, M., & Purwanto, J. (2023). Kajian Luasan Petak Sawah untuk Perencanaan Konsolidasi Lahan Persawahan. 1(02), 113–120. https://doi.org/10.55180/aei.v1i2.727

Authors

Nur Annisa Indah Lestari
nurannisa.ilestari@gmail.com (Primary Contact)
Erwin Hermawan
Sahid Agustian Hudjimartsu
Arif K Wijayanto
Ahmad Junaedi
Miftahul B.R. Khamid
Lestari, N. A. I., Erwin Hermawan, Sahid Agustian Hudjimartsu, Arif K Wijayanto, Ahmad Junaedi, & Miftahul B.R. Khamid. (2025). Analisis Produktivitas Padi Menggunakan UAV Multispektral Dan Support Vector Regression Dengan Optimasi Grid Search Di Balumbang Jaya, Bogor Barat. Jurnal Geografi, Edukasi Dan Lingkungan (JGEL), 9(2), 180–193. https://doi.org/10.22236/jgel.v9i2.17257

Article Details