Spatio-Temporal Analysis Of Yogyakarta Internasional Airport Development Impact On LULC And LST In Kulon Progo

Agung Jauhari, Dwi Setyo Aji, Ilham Kio Hafidz, Aldea Rizka Novareka, Dwika Ajeng Oktaviani, Aditya Rico Oktavian

Abstract

Yogyakarta Internasional Airport (YIA) development is predicted to trigger massive development in Kulon Progo Regency, whether for the infrastructure or supporting facilities development. Land conversion from densely vegetated land into less dense vegetated land, i.e., forest or garden to built-up areas, is determined to increase Land Surface Temperature (LST). This research studied the spatiotemporal change of LULC and LST change in Kulon Progo Regency by employing Landsat 8 data for three periods respectively, before the development (2013), at the start of construction (2017), and after the YIA fully operated (2021). The spatial pattern of LST was also investigated using spatial statistics, namely, Global Moran’s I, to identify spatial autocorrelation and Hot Spots Analysis (Getis-Ord G*) to determine the spatial patterns or clusters. The findings showed that since the YIA development, the built-up area and bare land increased significantly (quadruple), while agriculture reduced dramatically by 14%. Furthermore, the LST was closely related to the LULC, where the high LST was located in the built-up area and bare land (32 ºC -38ºC), while the low LST was located in the forest (27ºC-31ºC). Moran’s I index, around 0.9 (close to 1), indicates a positive spatial autocorrelation, while the p-value (0.00) indicates that the LST was significantly clustered. Indeed, Hot Spot Analysis (Getis-Ord Gi*) revealed that the high-temperature areas clustered (hot spot) along the coastal and urban areas, while low-temperature areas clustered around Menoreh Hills.

Full text article

Generated from XML file

References

Al Shawabkeh, R., AlHaddad, M., Al-Fugara, A., Al-Hawwari, L., Al-Hawwari, M. I., Omoush, A., & Arar, M. (2023). Modeling the impact of urban land cover features and changes on the land surface temperature (LST): The case of Jordan. Ain Shams Engineering Journal, May, 102359. https://doi.org/10.1016/j.asej.2023.102359

Arrofiqoh, E. N., & Setyaningrum, D. A. (2021). The Impact of Covid-19 Pandemic on Land Surface Temperature in Yogyakarta Urban Agglomeration. Journal of Applied Geospatial Information, 5(1), 480–485. https://doi.org/10.30871/jagi.v5i1.2784

Atianta, L. (2020). Suhu Permukaan Lahan Dan Intensitas Pemanfaatan Ruang Di Perkotaan Yogyakarta. Jurnal Pengembangan Kota, 8(2), 151–162. https://doi.org/10.14710/jpk.8.2.151-162

Ayuningtyas, W. (2022). Analisis Dampak Sosial Ekonomi Pembangunan Bandar Udara Internasional Yogyakarta (YIA) Bagi Kepala Keluarga Di Desa Glagah Kulon Progo. Journal.Upy.Ac.Id, 6(1), 858–865. https://journal.upy.ac.id/index.php/pkn/article/view/2642

Bamrungkhul, S., & Tanaka, T. (2022). The assessment of land suitability for urban development in the anticipated rapid urbanization area from the Belt and Road Initiative: A case study of Nong Khai City, Thailand. Sustainable Cities and Society, 83, 103988. https://doi.org/10.1016/J.SCS.2022.103988

Dahlia, S. (2021). Analisis Pola Spasial Pesebaran Kasus Covid-19 Menggunakan Sistem Informasi Geografis Di DKI Jakarta. Jurnal Geografi, Edukasi Dan Lingkungan (JGEL), 5(2), 101–108. https://doi.org/10.22236/jgel.v5i2.7098

Dahlia, S., Adiputra, A., Alwin, Najiyullah, M. A., Kamzia, & Rahmadiansyah, F. K. (2020). Analisis Perubahan Penggunaan Lahan Pasca Kejadian Tsunami Tahun 2018 Sebagai Rekomendasi Tata Ruang Di Pesisir Pantai Kecamatan Panimbang, Pandeglang, Banten. Jurnal Geografi, Edukasi Dan Lingkungan (JGEL), 4(1), 8–16. https://doi.org/10.29405/jgel.v4i1.3640

EPA. (2011). Reducing Urban Heat Islands: Compendium of Strategies. In Reducing Urban Heat Islands: Compendium of Strategies.

ESRI. (2023a). How Hot Spot Analysis (Getis-Ord Gi*) works. https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm

ESRI. (2023b). How Spatial Autocorrelation (Global Moran’s I) works. https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-spatial-autocorrelation-moran-s-i-spatial-st.htm

Estoque, R. C., Murayama, Y., & Myint, S. W. (2017). Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Science of the Total Environment, 577, 349–359. https://doi.org/10.1016/j.scitotenv.2016.10.195

Fischer, M. ., & Getis, A. (2010). Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications. Springer Verlag.

RPJMD Kabupaten Kulon Progo Tahun 2017-2022, Pemerintah Kabupaten Kulon Progo 563 (2017). http://www.dof.gov.my/en/c/document_library/get_file?uuid=e25cce1e-4767-4acd-afdf-67cb926cf3c5&groupId=558715

Ha, T. V., Tuohy, M., Irwin, M., & Tuan, P. V. (2020). Monitoring and mapping rural urbanization and land use changes using Landsat data in the northeast subtropical region of Vietnam. Egyptian Journal of Remote Sensing and Space Science, 23(1), 11–19. https://doi.org/10.1016/j.ejrs.2018.07.001

Igun, E., & Williams, M. (2018). Impact of urban land cover change on land surface temperature. Global Journal of Environmental Science and Management, 4(1), 47–58. https://doi.org/10.22034/gjesm.2018.04.01.005

Indrawati, D. M., Suharyadi, S., & Widayani, P. (2020). Analisis Pengaruh Kerapatan Vegetasi Terhadap Suhu Permukaan dan Keterkaitannya Dengan Fenomena UHI. Media Komunikasi Geografi, 21(1), 99. https://doi.org/10.23887/mkg.v21i1.24429

Jati, B. A. E. K., Akbar, M. F. Al, Wahyuni, T., Khasanah, E. U., Paramanandi, A. R. G., Sutiono, H. E. C. P., Setyaningsih, D. P., Widyatmanti, W., & Wibowo, T. W. (2023). Analysis of Tsunami Evacuation Route Planning in Kulon Progo Regency. International Journal of Remote Sensing and Earth Sciences (IJReSES), 20(1), 16. https://doi.org/10.30536/j.ijreses.2023.v20.a3823

Krishnan, P., Kochendorfer, J., Dumas, E. J., Guillevic, P. C., Baker, C. B., Meyers, T. P., & Martos, B. (2015). Comparison of in-situ, aircraft, and satellite land surface temperature measurements over a NOAA Climate Reference Network site. Remote Sensing of Environment, 165, 249–264. https://doi.org/10.1016/j.rse.2015.05.011

Kumari, M., Sarma, K., & Sharma, R. (2019). Using Moran’s I and GIS to study the spatial pattern of land surface temperature in relation to land use/cover around a thermal power plant in Singrauli district, Madhya Pradesh, India. Remote Sensing Applications: Society and Environment, 15. https://doi.org/10.1016/j.rsase.2019.100239

Latif, M. S. (2014). Land Surface Temperature Retrival of Landsat-8 Data Using Split Window Algorithm- A Case Study of Ranchi District. Internal Journal of Engineering Development and Research, 2(4), 3840–3849.

Li, W., Wang, D., Liu, S., & Zhu, Y. (2019). Measuring urbanization-occupation and internal conversion of peri-urban cultivated land to determine changes in the peri-urban agriculture of the black soil region. Ecological Indicators, 102, 328–337. https://doi.org/10.1016/j.ecolind.2019.02.055

Liang, J., Xie, Y., Sha, Z., & Zhou, A. (2020). Modeling urban growth sustainability in the cloud by augmenting Google Earth Engine (GEE). Computers, Environment and Urban Systems, 84(March), 101542. https://doi.org/10.1016/j.compenvurbsys.2020.101542

Mohammad, P., Goswami, A., Chauhan, S., & Nayak, S. (2022). Machine learning algorithm based prediction of land use land cover and land surface temperature changes to characterize the surface urban heat island phenomena over Ahmedabad city, India. Urban Climate, 42(July 2021), 101116. https://doi.org/10.1016/j.uclim.2022.101116

Naikoo, M. W., Rihan, M., Ishtiaque, M., & Shahfahad. (2020). Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets. Journal of Urban Management, 9(3), 347–359. https://doi.org/10.1016/j.jum.2020.05.004

Nando, F. H. (2021). Perubahan Kondisi Variasi Land Surface Temperature di Masa Pandemi Covid-19 (Studi Kasus: Kota Kediri, Jawa Timur). Jurnal Geografi, Edukasi Dan Lingkungan (JGEL), 5(2), 92–100. https://doi.org/10.22236/jgel.v5i2.7032

Njoku, E. A., & Tenenbaum, D. E. (2022). Quantitative assessment of the relationship between land use/land cover (LULC), topographic elevation and land surface temperature (LST) in Ilorin, Nigeria. Remote Sensing Applications: Society and Environment, 27, 100780. https://doi.org/10.1016/j.rsase.2022.100780

Nugraha, Gunawan, T., & Kamal, M. (2019). Comparison of Land Surface Temperature Derived from Landsat 7 ETM+ and Landsat 8 OLI/TIRS for Drought Monitoring. IOP Conference Series: Earth and Environmental Science, 313(1). https://doi.org/10.1088/1755-1315/313/1/012041

Nugraha, I. C., Siti Fatimah, Belia Fransiska, & Endriana Prasetyawati. (2022). Bela Beli Kulon Progo Sebagai Sebuah Model Endogenous Development. Jurnal Litbang Sukowati : Media Penelitian Dan Pengembangan, 6(1), 123–140. https://doi.org/10.32630/sukowati.v6i1.333

Nugroho, A. D., Prasada, I. M. Y., Putri, S. K., Anggrasari, H., & Sari, P. N. (2018). Rantai Nilai Cabai di Lahan Pasir Pantai Kabupaten Kulon Progo. Economics Development Analysis Journal, 7(4), 458–467. https://doi.org/10.15294/edaj.v7i4.25013

Ochoa, J. J., Tan, Y., Qian, Q. K., Shen, L., & Moreno, E. L. (2018). Learning from best practices in sustainable urbanization. Habitat International, 78, 83–95. https://doi.org/10.1016/J.HABITATINT.2018.05.013

Olorunfemi, I. E., Fasinmirin, J. T., Olufayo, A. A., & Komolafe, A. A. (2020). GIS and remote sensing-based analysis of the impacts of land use/land cover change (LULCC) on the environmental sustainability of Ekiti State, southwestern Nigeria. Environment, Development and Sustainability, 22(2), 661–692. https://doi.org/10.1007/s10668-018-0214-z

Pradhan, B., Al-sharif, A. A. A., & Abdullahi, S. (2017). Urban sprawl assessment. In Spatial Modeling and Assessment of Urban Form: Analysis of Urban Growth: From Sprawl to Compact Using Geospatial Data. https://doi.org/10.1007/978-3-319-54217-1_4

Prastyo, F. U., Nurjani, E., & Giyarsih, S. R. (2022). Distribusi Spasial Surface Urban Heat Island (SUHI) Kawasan Permukiman Perkotaan di Kota Yogyakarta. Media Komunikasi Geografi, 23(1), 73–83. https://doi.org/10.23887/mkg.v23i1.34300

Pratiwi, R. D., Fatimah, I. S., & Munandar, A. (2018). Spatial planning for green infrastructure in Yogyakarta City based on land surface temperature. IOP Conference Series: Earth and Environmental Science, 179(1). https://doi.org/10.1088/1755-1315/179/1/012004

Punzo, G., Castellano, R., & Bruno, E. (2022). Using geographically weighted regressions to explore spatial heterogeneity of land use influencing factors in Campania (Southern Italy). Land Use Policy, 112(September 2021), 105853. https://doi.org/10.1016/j.landusepol.2021.105853

Roy, L., & Das, S. (2021). GIS-based landform and LULC classifications in the Sub-Himalayan Kaljani Basin: Special reference to 2016 Flood. Egyptian Journal of Remote Sensing and Space Science, 24(3), 755–767. https://doi.org/10.1016/j.ejrs.2021.06.005

Rustiadi, E., Pravitasari, A. E., Setiawan, Y., Mulya, S. P., Pribadi, D. O., & Tsutsumida, N. (2021). Impact of continuous Jakarta megacity urban expansion on the formation of the Jakarta-Bandung conurbation over the rice farm regions. Cities, 111, 103000. https://doi.org/10.1016/j.cities.2020.103000

Sam, S. C., & Balasubramanian, G. (2023). Spatiotemporal detection of land use/land cover changes and land surface temperature using Landsat and MODIS data across the coastal Kanyakumari district, India. Geodesy and Geodynamics, 14(2), 172–181. https://doi.org/10.1016/j.geog.2022.09.002

Saputra, M. H., & Lee, H. S. (2019). Prediction of land use and land cover changes for North Sumatra, Indonesia, using an artificial-neural-network-based cellular automaton. Sustainability (Switzerland), 11(11), 1–16. https://doi.org/10.3390/su11113024

Singh, P., Kikon, N., & Verma, P. (2017). Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustainable Cities and Society, 32, 100–114. https://doi.org/10.1016/j.scs.2017.02.018

Statistical Bureau of Kulon Progo Regency. (2023). Kulon Progo Dalam Angka Tahun 2023.
Sukri, I., Harini, R., & Sudrajat. (2021). Analisis Perubahan Penggunaan Lahan di Kabupaten Kulon Progo Menggunakan Citra Landsat 7 Tahun 2011 dan Landsat 8 Tahun 2019. Seminar Nasional Geografi IV Magister Geografi UGM., September, 255–263.

Sutardi. (2017). Kajian Minus One Test Dan Kesuburan Lahan Pasir Untuk Budidaya Tanaman Bawang Merah. Jurnal Pengkajian Dan Pengembangan Teknologi Pertanian, 20(22), 25–34.

Wicaksono, D., Ardiansyah, F., Nugroho, G. A., & S, C. A. T. (2015). Analisis Multi-Skenario Dampak Tsunami Di Kawasan Pesisir Kabupaten Kulon Progo ,. Pertemuan Ilmiah Tahunan (PIT) Ke-2 Ikatan Ahli Kebencanaan Indonesia, 1.

Widodo, B., Lupyanto, R., Sulistiono, B., Harjito, D. A., Hamidin, J., Hapsari, E., Yasin, M., & Ellinda, C. (2015). Analysis of Environmental Carrying Capacity for the Development of Sustainable Settlement in Yogyakarta Urban Area. Procedia Environmental Sciences, 28(SustaiN 2014), 519–527. https://doi.org/10.1016/j.proenv.2015.07.062

Yekti, A., Darwanto, D. H., Jamhari, J., & Hartono, S. (2019). Strategi Manajemen Risiko Usahatani Melon Di Lahan Pasir Pantai Kabupaten Kulon Progo. Jurnal Ilmu-Ilmu Pertanian, 26(1), 51–63. https://doi.org/10.55259/jiip.v26i1.208

Zoomers, E. B. (Annelies., & Otsuki, K. (2017). Addressing the impacts of large-scale land investments: Re-engaging with livelihood research. Geoforum, 83, 164–171. https://doi.org/10.1016/J.GEOFORUM.2017.01.009

Authors

Agung Jauhari
agungjauhari@mail.ugm.ac.id (Primary Contact)
Dwi Setyo Aji
Ilham Kio Hafidz
Aldea Rizka Novareka
Dwika Ajeng Oktaviani
Aditya Rico Oktavian
Jauhari, A., Setyo Aji, D., Kio Hafidz, I., Rizka Novareka, A., Ajeng Oktaviani, D., & Rico Oktavian, A. (2024). Spatio-Temporal Analysis Of Yogyakarta Internasional Airport Development Impact On LULC And LST In Kulon Progo. Jurnal Geografi, Edukasi Dan Lingkungan (JGEL), 8(2), 111–126. https://doi.org/10.22236/jgel.v8i2.13128

Article Details