Deteksi Perubahan Jalur Lahar di Curah Lengkong Pasca Erupsi Gunungapi Semeru 2021 Menggunakan Google Earth Engine
Abstract
Pemetaan jalur aliran lahar memiliki relevansi dengan bahaya vulkanik pasca-erupsi terjadi. Teknik penginderaan jauh semakin banyak digunakan untuk memetakan daerah gunungapi aktif, berkat kemampuannya untuk mensurvei area yang luas dan berbahaya dengan keterbatasan waktu dan biaya serta memiliki keakuratan resolusi spasial cukup tinggi. Tujuan dari penelitian ini adalah untuk mendeteksi perubahan jalur lahar pasca erupsi Gunungapi Semeru 2021 menggunakan klasifikasi terbimbing dengan Algoritma Random Forest dalam cloud computing Google Earth Engine. Data optik dan SAR merupakan sumber data pelengkap yang dapat digunakan untuk memetakan jalur aliran lahar secara efektif, selain mengurangi awan, dan meningkatkan kinerja pendeteksian perubahan. Sementara itu, studi area yang digunakan adalah Area of Interest (AOI) perubahan jalur aliran lahar di saluran Curah Lengkong yang masuk pada wilayah administrasi Desa Supiturang, Kecamatan Pronojiwo. Metode yang digunakan dalam penelitian ini adalah klasifikasi terbimbing dengan algoritma Random Forest berdasarkan platform Google Earth Engine (GEE) untuk menganalisis secara bersamaan citra yang diperoleh oleh Synthetic Aperture Radar (SAR) Sentinel-1, dan oleh sensor optik Sentinel-2 MSI. Hasilnya menunjukkan bahwa, meskipun beberapa piksel terisolasi salah diklasifikasikan sebagai dari jalur aliran lahar, pendekatan algoritma Random Forest dapat mengidentifikasi badan jalur aliran lahar utama dengan benar serta mencapai akurasi antara data training dan data uji serta validasi dominan melebihi >85% untuk OA dan Kappa >0.80. Artikel ini menyimpulkan bahwa teknik klasifikasi terbimbing dengan algoritma Random Forest dapat diaplikasikan untuk menganalisis data optik dan SAR sebagai upaya pemetaan perubahan jalur aliran lahar dengan jangkauan area yang luas dan berbahaya. Meskipun demikian, diperlukan proses pembuktian langsung ke lapangan untuk memvalidasi hasil pemetaan dan interpretasinya.
Full text article
References
Ajadi, O., Meyer, F., & Webley, P. (2016). Change Detection in Synthetic Aperture Radar Images Using a Multiscale-Driven Approach. Remote Sensing, 8(6), 482. https://doi.org/10.3390/rs8060482
Amani, M., Brisco, B., Afshar, M., Mirmazloumi, S. M., Mahdavi, S., Mirzadeh, S. M. J., … Granger, J. (2019). A generalized supervised classification scheme to produce provincial wetland inventory maps: an application of Google Earth Engine for big geo data processing. Big Earth Data, 3(4), 378–394. https://doi.org/10.1080/20964471.2019.1690404
Aufaristama, M., Hoskuldsson, A., Jonsdottir, I., Thordarson, T., Erlangga, I., & Ulfarsson, Magnus Orn. (2019). Morphological change of the Anak Krakatau volcano, Indonesia following the tsunamigenerating flank collapsed as detected by multitemporal optical, infrared and radar satellite data. Geophysical Research Abstracts, 21.
Aufaristama, M., Hoskuldsson, A., Ulfarsson, Magnus Orn, Jonsdottir, I., & Thordarson, T. (2019). The 2014–2015 Lava Flow Field at Holuhraun, Iceland: Using Airborne Hyperspectral Remote Sensing for Discriminating the Lava Surface. Remote Sensing, 11(5), 476.
Azzahra, E., & Jannah, G. S. (2022). Spatio-Temporal Analysis Of Land Cover Changes After The Semeru Eruption 2021 Based on SVM and RF Algorithm. Practical Work Project at Badan Riset dan Inovasi Nasional (BRIN).
Bignami, C., Chini, M., Amici, S., & Trasatti, E. (2020). Synergic Use of Multi-Sensor Satellite Data for Volcanic Hazards Monitoring: The Fogo (Cape Verde) 2014–2015 Effusive Eruption. Frontiers in Earth Science, 8. https://doi.org/10.3389/feart.2020.00022
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/a:1010933404324
Cai, W., Wei, Z., Liu, R., Zhuang, Y., Wang, Y., & Ning, X. (2021). Remote sensing image recognition based on multiattention residual fusion networks. ASP Transactions on Pattern Recognition and Intelligent Systems, 1(1), 1–8.
Casalbore, D., Di Traglia, F., Romagnoli, C., Favalli, M., Gracchi, T., Tacconi Stefanelli, C., … Chiocci, F. L. (2022). Integration of Remote Sensing and Offshore Geophysical Data for Monitoring the Short-Term Morphological Evolution of an Active Volcanic Flank: A Case Study from Stromboli Island. Remote Sensing, 14(18), 4605. https://doi.org/10.3390/rs14184605
Cigna, F., Tapete, D., & Lu, Z. (2020). Remote sensing of volcanic processes and risk. Remote Sensing, 12(16), 2567.
Cole, S. E. (2011). Geophysical investigation into the internal dynamics of moving lahars: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Earth Science at Massey University, Palmerston North, New Zealand. Massey University.
Corradino, C., Bilotta, G., Cappello, A., Fortuna, L., & Negro, D. (2021). Combining radar and optical satellite imagery with machine learning to map lava flows at Mount Etna and Fogo Island. Energies, 14(1), 197.
Del Negro, C., Cappello, A., Bilotta, G., Ganci, G., Hérault, A., & Zago, V. (2019). Living at the edge of an active volcano: Risk from lava flows on Mt. Etna. GSA Bulletin, 132(7-8), 1615–1625. https://doi.org/10.1130/b35290.1
Dong, Z., Zhang, M., Li, L., Liu, Q., Wen, Q., Wang, W., … Ji, W. (2022). A multiscale building detection method based on boundary preservation for remote sensing images: Taking the Yangbi M6.4 earthquake as an example. Natural Hazards Research, 2(2), 121–131. https://doi.org/10.1016/j.nhres.2022.06.001
Dumaisnil, C., Thouret, J., Chambon, G., Doyle, E. E., & Cronin, S. J. (2010). Hydraulic, physical and rheological characteristics of rain‐triggered lahars at Semeru volcano, Indonesia. Earth Surface Processes and Landforms, 35(13), 1573–1590.
Foody, G. M. (2020). Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sensing of Environment, 239, 111630.
Geologi, B. (2014, June 3). G. SEMERU, JAWA TIMUR. Retrieved September 6, 2022, from https://vsi.esdm.go.id/ website: https://vsi.esdm.go.id/index.php/gunungapi/data-dasar-gunungapi/533-g-semeru
Geologi, B. (2021a-b, December 5). Press Release Aktivitas Vulkanik G. Semeru – Jawa Timur 4-5 Desember 2021. Retrieved September 3, 2022, from https://vsi.esdm.go.id/ website: https://vsi.esdm.go.id/index.php/gunungapi/aktivitas-gunungapi/3856-press-release-aktivitas-vulkanik-g-semeru--jawa-timur-4-5-desember-2021
Global Volcanism Network. (1976). Report on Semeru (Indonesia). Scientific Event Alert Network Bulletin, 1(14). https://doi.org/10.5479/si.gvp.nseb197611-263300
Global Volcanism Network. (2017-2020). Report on Semeru (Indonesia). Bulletin of the Global Volcanism Network, 42-45(4, 5, 9, dan 10). https://doi.org/10.5479/si.gvp.bgvn201705-263300
Gomez, C., & Lavigne, F. (2010). Transverse architecture of lahar terraces, inferred from radargrams: preliminary results from Semeru Volcano, Indonesia. Earth Surface Processes and Landforms, 35(9), 1116–1121.
Gomez, C., Lavigne, F., & Hadmoko, Danang Sri. (2008). Lahars Deposits Architecture and Volume in the C. Lengkong Valley at Semeru volcano, Indonesia.
Gomez, C., Lavigne, F., Sri Hadmoko, D., & Wassmer, P. (2018). Insights into lahar deposition processes in the Curah Lengkong (Semeru Volcano, Indonesia) using photogrammetry-based geospatial analysis, near-surface geophysics and CFD modelling. Journal of Volcanology and Geothermal Research, 353, 102–113. https://doi.org/10.1016/j.jvolgeores.2018.01.021
Gomez, C., Setiawan, M. A., Listyaningrum, N., Wibowo, S. B., Hadmoko, Danang Sri, Suryanto, W., … Sunardi, S. (2022). LiDAR and UAV SfMMVS of Merapi Volcanic Dome and Crater Rim Change from 2012 to 2014. Remote Sensing, 14(20), 5193.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetaryscale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27.
Hadmoko, Danang Sri, de Belizal, Edouard, Mutaqin, Bachtiar Wahyu, Dipayana, Gilang Arya, Marfai, Muh Aris, Lavigne, F., … Gomez, C. (2018). Posteruptive lahars at Kali Putih following the 2010 eruption of Merapi volcano, Indonesia: occurrences and impacts. Natural Hazards, 94(1), 419–444.
Hu, T., Liu, J., Zheng, G., Li, Y., & Xie, B. (2018). Quantitative assessment of urban wetland dynamics using high spatial resolution satellite imagery between 2000 and 2013. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-25823-9
Irawan, L. Y., Prasetyo, W. E., Wahyu, H. Z. P., Devy, M. M. R., Yusuf, A. M., Hartono, R., & Purwanto. (2022). Mapping the Semeru lahar-flood hazard of Desa Supiturang using the analytical hierarchy process (AHP) method. Preface: The 1st International Conference on Environmental Management (ICEM) 2022. IOP Conference Series: Earth and Environmental Science.
Ji, H., Li, X., Wei, X., Liu, W., Zhang, L., & Wang, L. (2020). Mapping 10m Resolution Rural Settlements Using MultiSource Remote Sensing Datasets with the Google Earth Engine Platform. Remote Sensing, 12(17). https://doi.org/10.3390/rs12172832
Karantanellis, E., Marinos, V., Vassilakis, E., & Christaras, B. (2020). Objectbased analysis using unmanned aerial vehicles (UAVs) for sitespecific landslide assessment. Remote Sensing, 12(11), 1711.
Kassouk, Z., Thouret, J., Gupta, A., Solikhin, A., & Liew, S. C. (2014). Objectoriented classification of a highspatial resolution SPOT5 image for mapping geology and landforms of active volcanoes: Semeru case study, Indonesia. Geomorphology, 221, 18–33.
Kusumosubroto, H. (2012). Aliran Debris dan Lahar Pembentukan. In Pengaliran, Pengendapan, dan Pengendalianya, Edisi Pertama, Graha Illmu.
Larasati, Zahra Rahma, Hariyanto, T., & Kurniawan, A. (2017). Pemetaan daerah risiko banjir lahar berbasis SIG untuk menunjang kegiatan mitigasi bencana (Studi kasus: Gunung Semeru, Kab. Lumajang). Jurnal Teknik ITS, 6(2), C363–C368.
Lavigne, F. (2004). Rate of sediment yield following small‐scale volcanic eruptions: a quantitative assessment at the Merapi and Semeru stratovolcanoes, Java, Indonesia. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 29(8), 1045–1058.
Lavigne, F., Morin, J., Estuning, M., Calder, E. S., Usamah, M., & Nugroho, U. (2017). Mapping hazard zones, rapid warning communication and understanding communities: Primary ways to mitigate pyroclastic flow hazard. In Observing the Volcano World (pp. 107–119). Springer.
Lavigne, F., & Suwa, H. (2004). Contrasts between debris flows, hyperconcentrated flows and stream flows at a channel of Mount Semeru, East Java, Indonesia. Geomorphology, 61(1-2), 41–58. https://doi.org/10.1016/j.geomorph.2003.11.005
Li, Q., Qiu, C., Ma, L., Schmitt, M., & Zhu, X. X. (2020). Mapping the land cover of Africa at 10 m resolution from multisource remote sensing data with Google Earth Engine. Remote Sensing, 12(4), 602.
Loukika, K. N., Keesara, V. R., & Sridhar, V. (2021). Analysis of Land Use and Land Cover Using Machine Learning Algorithms on Google Earth Engine for Munneru River Basin, India. Sustainability, 13(24), 13758. https://doi.org/10.3390/su132413758
Lyons, M. B., Keith, D. A., Phinn, S. R., Mason, T. J., & Elith, J. (2018). A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sensing of Environment, 208, 145–153.
MoralesBarquero, L., Lyons, M. B., Phinn, S. R., & Roelfsema, C. M. (2019). Trends in remote sensing accuracy assessment approaches in the context of natural resources. Remote Sensing, 11(19), 2305.
Mullissa, A., Vollrath, A., OdongoBraun, C., Slagter, B., Balling, J., Gou, Y., … Reiche, J. (2021). Sentinel1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine. Remote Sensing, 13(10), 1954.
Noor, D. (2014). Pengantar Mitigasi Bencana Geologi. Deepublish.
Poland, M. P., Lopez, T., Wright, R., & Pavolonis, M. J. (2020). Forecasting, detecting, and tracking volcanic eruptions from space. Remote Sensing in Earth Systems Sciences, 3(1), 55–94.
Pontius, R. G., & Millones, M. (2011). Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407–4429. https://doi.org/10.1080/01431161.2011.552923
Purba, A., Sumantri, Siswo Hadi, Kurniadi, A., & Putra,. (2022). Analisis Kapasitas Masyarakat Terdampak Erupsi Gunung Semeru. PENDIPA Journal of Science Education, 6(2), 599–608.
Pusat Vulkanologi dan Mitigasi Bencana Geologi. (n.d.). LAPORAN AKTIVITAS GUNUNG API (VOLCANIC ACTIVITY REPORT). Retrieved September 24, 2022, from https://magma.esdm.go.id/ website: https://magma.esdm.go.id/v1/gunung-api/laporan#
Pyle, D., Mather, T., & Biggs, J. (2013). Remote sensing of volcanoes and volcanic processes: integrating observation and modellingintroduction. Geological Society of London Special Publications, 380(1), 1–13.
Rwanga, S. S., & Ndambuki, J. M. (2017). Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences, 8(04), 611.
Shimomura, M., Banggur, W. F. S., & Loeqman, A. (2019). Numerical Simulation of Pyroclastic Flow at Mt. Semeru in 2002. Journal of Disaster Research, 14(1), 116–125. https://doi.org/10.20965/jdr.2019.p0116
Sim, J., & Wright, C. C. (2005). The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Physical Therapy, 85(3), 257–268.
Solikhin, A., Thouret, J.-C., Gupta, A., Harris, A. J. L., & Liew, S. C. (2012). Geology, tectonics, and the 2002–2003 eruption of the Semeru volcano, Indonesia: Interpreted from high-spatial resolution satellite imagery. Geomorphology, 138(1), 364–379. https://doi.org/10.1016/j.geomorph.2011.10.001
Starheim, C. C. A., Gomez, C., Davies, T., Lavigne, F., & Wassmer, P. (2013). In-flow evolution of lahar deposits from video-imagery with implications for post-event deposit interpretation, Mount Semeru, Indonesia. Journal of Volcanology and Geothermal Research, 256, 96–104. https://doi.org/10.1016/j.jvolgeores.2013.02.013
Stehman, S. V., & Foody, G. M. (2009). Accuracy assessment. In The SAGE handbook of remote sensing (pp. 297–309). Sage London.
Thouret, J. (1999). Volcanic geomorphology—an overview. Earthscience Reviews, 47(12), 95–131.
Thouret, J., Kassouk, Z., Gupta, A., Liew, S. C., & Solikhin, A. (2015). Tracing the evolution of 2010 Merapi volcanic deposits (Indonesia) based on objectoriented classification and analysis of multitemporal, very high resolution images. Remote Sensing of Environment, 170, 350–371.
Thouret, J., Oehler, J., Gupta, A., Solikhin, A., & Procter, J. N. (2014). Erosion and aggradation on persistently active volcanoes—a case study from Semeru Volcano, Indonesia. Bulletin of Volcanology, 76(10), 1–26.
Thouret, J.-C., Lavigne, F., Suwa, H., Sukatja, B., & Surono. (2007). Volcanic hazards at Mount Semeru, East Java (Indonesia), with emphasis on lahars. Bulletin of Volcanology, 70(2), 221–244. https://doi.org/10.1007/s00445-007-0133-6
Tung, F., & LeDrew, E. (1988). The determination of optimal threshold levels for change detection using various accuracy indexes. Photogrammetric Engineering and Remote Sensing, 54(10), 1449–1454.
Ujjwal, K., Garg, S., Hilton, J., Aryal, J., & ForbesSmith, N. (2019). Cloud Computing in natural hazard modeling systems: Current research trends and future directions. International Journal of Disaster Risk Reduction, 38, 101188.
Vergni, L., Vinci, A., Todisco, F., Santaga, F. S., & Vizzari, M. (2021). Comparing Sentinel-1, Sentinel-2, and Landsat-8 data in the early recognition of irrigated areas in central Italy. Journal of Agricultural Engineering, 52(4). https://doi.org/10.4081/jae.2021.1265
Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: the kappa statistic. Fam Med, 37(5), 360–363.
Ville, A., Lavigne, F., Virmoux, C., Brunstein, D., de Bélizal, É., Wibowo, S. B., & Sri Hadmoko, D. (2015). Evolution géomorphologique de la vallée de la Gendol à la suite de l’éruption d’octobre 2010 du volcan Merapi (Java, Indonésie). Géomorphologie : Relief, Processus, Environnement, 21(3), 235–250. https://doi.org/10.4000/geomorphologie.11073
Vizzari, M. (20). PlanetScope, Sentinel-2, and Sentinel-1 Data Integration for Object-Based Land Cover Classification in Google Earth Engine. Remote Sensing, 14(11), 2628. https://doi.org/10.3390/rs14112628
Yenigün, D., Ertan, G., & Siciliano, M. (2017). Omission and commission errors in network cognition and network estimation using ROC curve. Social Networks, 50, 26–34. https://doi.org/10.1016/j.socnet.2017.03.007
Zaennudin, A. (2010). The characteristic of eruption of Indonesian active volcanoes in the last four decades. Jurnal Lingkungan Dan Bencana Geologi, 1(2), 113–129.